Солнечные батареи для отопления дома: обзор разновидностей и правила выбора

Особенности выбора.

Выбирая солнечные батареи для отопления дома необходимо учесть несколько нюансов:

Мощность – один из основных параметров, влияющий на стоимость солнечных панелей. Поэтому перед их приобретением необходимо определить ориентировочное потребление электроэнергии. В сопроводительной документации всегда указывается максимальная мощность, вырабатываемая батареями за час в ваттах. Но необходимо учитывать, что в пасмурную погоду она будет немного меньшая. Также мощность зависит от вида солнечных батарей.

Размер – существенно зависит от мощности панелей и типа их фотоэлементов. Крыша должна иметь необходимые размеры для монтажа нужного количества панелей.

В среднем 1 кв. метр солнечных батарей дает за 1 час около 120 Вт.

Панели суммарной площадью в 20 кв. метров обеспечат электроэнергией одноэтажный загородный дом в полном объеме.

Тип – поли- и монокристаллические солнечные батареи имеют значительно высшую стоимость, чем кремневые тонколистовые. Но вырабатывают больше электроэнергии и требуют меньшей поверхности крыши.

Возможность при необходимости наращивания мощности. Ее можно легко увеличить за счет добавления дополнительных солнечных панелей. Замена батарей путем приобретения новых более эффективных экономически невыгодно. Поэтому необходимо учесть небольшой запас поверхности крыши.

Солнечные батареи от ведущих производителей гарантировано выдержат срок эксплуатации больше 25 лет. Надежность их зависит от фирмы производителя. Желательно отдать предпочтение известному производителю. Он обеспечивает бесплатную замену панелей по гарантии, оказывает помощь при монтаже, наладке, ремонте, наращивании мощности.

Мощность инвертора и потери в нем

Теперь что касается инвертора, он тоже имеет свой КПД а это порядка 75-90%, т.е. все полученные величины выработки энергии и запаса можно относить к этим процентам. В итоге лучше брать двойной запас емкости для аккумуляторов, Так при потреблении 2400Вт.ч за ночь, устанавливать 4 АКБ емкостью 100А.ч. 100А*12В*4 = 4800Вт.ч. Мощность инвертора показывает номинальную нагрузку которую можно подключить к нему, т.е количество и тип бытовых приборов.

В Итоге получаем солнечную электростанцию на 2,5кВт:

  1. Солнечные батареи 4шт. по 250Вт. Выработка в месяц 170 -240кВт.ч (36тыс.руб.)
  2. АКБ по 100А.ч. 4 шт. запас до 4800 Вт. (AGM аккумуляторы 50тыс.руб.)
  3. Инвертор 2,4кВт номинальная мощность подключаемого оборудования (27тыс.)

Итого 113 тыс. руб. за комплект оборудования.

Коллекторы: получение тепла из солнечной энергии


Солнечные коллекторы Солнечные батареи могут применяться для обогрева объектов, нагрева жидкости. Возможность получения тепла обусловлена способностью батареи накапливать энергию. Это позволяет повышать температуру теплоносителя в трубах, за счет чего обеспечивается не только нагрев жидкости, но и обогрев всего объекта. Солнечные коллекторы функционируют по определенной схеме. Их основные элементы конструкции:

  • насосная станция;
  • бак-аккумулятор;
  • контроллер;
  • трубы и фитинги.

Виды коллекторов:

  • плоские: состоят из плоского абсорбера, покрытия, теплоизолирующего слоя;
  • вакуумные (трубчатые): состоят из стеклянной колбы, теплоизоляционный материал заменен на вакуум, который заполняет емкость (в ней также находится абсорбер).

У второго варианта есть существенное преимущество – низкие теплопотери. По этой причине вакуумные коллекторы применяются повсеместно там, где не могут быть установлены плоские аналоги.

Правила выбора

Установка фотоэлектрических панелей позволяет снизить счета за электроэнергию. Они преобразуют накопленную солнечную энергию в электричество, которое необходимо, например, для питания устройств, используемых каждый день. Если вы собираетесь купить самые эффективные солнечные панели и создать собственную солнечную установку, обязательно прочтите это руководство. Мы расскажем, что вам нужно учесть, чтобы купить правильный продукт.

Место установки. Чаще всего на крыше монтируется фотоэлектрическая установка. Она должна быть наклонена под углом 30, максимум 35 градусов. Тогда панели будут работать достаточно эффективно. В случае дома с плоской крышей необходимо использовать специальную конструкцию, которая увеличит расстояние между панелями и исключит риск потемнения.

Пиковая мощность – это электрическая мощность, полученная в условиях испытаний (сокращенно STC) при солнечной освещенности 1000 Вт / м2. Стандартная пиковая мощность составляет несколько сотен Вт (например, солнечная панель 500 Вт). При этом следует учитывать, что среднее значение этого параметра с учетом всего года эксплуатации панелей составит около 10% от общей пиковой мощности, указанной производителем.

Допуск мощности. Из допуска мощности мы можем определить, насколько велика разница между реальной мощностью и номинальной пиковой мощностью. Если его значение положительное, это означает, что реальная мощность панели не ниже пиковой мощности, а иногда даже может быть выше.

Эффективность выражается в процентах. Это отношение максимальной электрической мощности к мощности солнечного излучения, попадающего на поверхность ячеек. Рекомендуется выбирать панели с наивысшим КПД, поскольку указанная мощность может быть получена при установке меньшего размера. Лучшая фотоэлектрическая панель имеет КПД не менее 13%.

Габаритные размеры и вес. В среднем высота фотоэлектрических панелей, имеющихся на рынке, составляет около 166 см, а ширина – 99 см. Их толщина в свою очередь составляет 3,5 см, иногда чуть больше или меньше. Модели, адаптированные для создания домашней установки, состоят из 60 ячеек, а предназначенные для промышленных целей – 72 ячейки. Расстояние между ними от 4 до 5 мм. В среднем фотоэлектрическая панель весит 19 кг.

Гарантия

При комплектовании элементов для строительства фотоэлектрической установки также следует обращать внимание на срок гарантии. Чаще всего это 10, максимум 12 лет

Чем дольше период защиты, тем больше мы можем быть уверены, что для производства панелей использовались компоненты хорошего качества. Также не стоит забывать проверить гарантию мощности. Обычно производители гарантируют, что в первые 10 лет эксплуатации установки мощность не упадет ниже 90% от начального значения, а через 15 лет – ниже 80%.

Диапазон рабочих температур. Установленная фотоэлектрическая панель должна быть устойчивой к неблагоприятным погодным условиям. Ее рабочая температура должна охватывать широкий диапазон – от -40 ºC до +85 ºC.

Фотоэлектрическая установка имеет не только преимущества, но и несколько недостатков. Однако вложение в нее практически всегда окупается. Кстати, по оценкам экспертов, панели, обращенные на юг под углом 40 градусов, могут производить от 900 до 1300 кВтч электроэнергии в год. В рейтинге лучших солнечных панелей мы собрали только лучшие и проверенные варианты, как для кемпинга, рыбалки, так и для домашней установки, поэтому каждый сможет выбрать модель для себя.

Почему так важна эффективность?

Большое значение эффективность приобретает при расчёте площади, которую вы можете использовать под систему солнечных батарей. При сопоставимых размерах описанных модулей от Amerisolar AS–6P30 280W (1.63 квадратных метра) и NeOn 340 W от LG (1.71 квадратных метра), разница в мощности на один квадратный метр на выходе будет составлять 15.6%. С одной стороны, это может показаться не очень эффективным, учитывая разницу в цене более чем в два раза, но в случае с ограниченным пространством или более агрессивной внешней средой, возможно, сдвинет ваш выбор в пользу этого известного производителя.

Увеличенный коэффициент полезного действия подчеркивает не только эффективность технологии изготовления, но и качественные материалы, используемые при изготовлении. Это сможет сказаться на сроках работы устройств, на устойчивость панелей к так называемой деградации. Не стоит забывать также и про гарантийные обязательства производителя. Имея представительства и гарантийные сервисы почти во всех уголках мира — LG сможет похвастаться более лояльным подходом к клиентам и выполнением своих обязательств.

Производители солнечных батарей для дома

В последнее время в России увеличилось производство солнечных батарей. В Москве, Краснодаре и Рязани функционируют крупные производственные индустрии по сборке, которые выпускают солнечные батареи для отопления высокой мощности. Большая часть продукции идет на экспорт, но предприятия не развиваются, потому что Китай, США, Германия и Япония стали мощными конкурентами по производству батарей.

По мнению покупателей, которые оставляют положительные отзывы о работе солнечных батарей для дома, популярные модели, имеющие доступную цену, изготовлены из поликристаллического кремния производства Германии и США.

Обзор солнечных батарей для дома смотрите на видео: 

https://youtube.com/watch?v=kzX1ua07jZI

Конструкция солнечной батареи

Солнечная батарея конструктивно представляет собой устройство для преобразования солнечной энергии в электрическую. Состоит батарея из следующих функциональных узлов:

  • алюминиевой рамки;
  • закаленного стекла с антибликом;
  • ламинированной пленки (передней и задней поверхностей );
  • элементов (ячеек) соединенных проводниками;
  • защитной пленки;
  • соединительной коробки.

Принцип работы солнечных батарей.

В конструкции предусмотрены диоды для защиты элементов от перегорания в результате перегрева в частично затененных областях. Выход из строя отдельной составляющей может привести к неисправности всей панели.

Ламинирующие пленки предназначены для герметизации конструкции и обеспечения плотного прилегания полупроводниковой пластины к стеклу. Плотное прилегание обеспечивает минимальные потери мощности, которые возникают из-за преломления света. Герметизация также используется для защиты от атмосферных осадков и коррозии. Для того чтобы солнечные лучи достигли поверхности полупроводниковых элементов, им необходимо пересечь границы стекла и ламинирующей пленки. Если стекло во всех моделях солнечных батарей одинаковое, то пленка имеет отличительные характеристики. Характеристики пленки влияют на выходные характеристики панели.

При выборе солнечной батареи проверить качество пленки невозможно, поэтому приходится верить производителю. Перед выбором советуем ознакомиться с репутацией производителей солнечных производителей.

По качеству все полупроводниковые солнечные элементы разделены на 3 типа:

  • Grade A – высокого качества при старении теряется мощность примерно на 5%;
  • Grade B – среднего качества старении теряется мощность не более 30%;
  • Grade C – низкого качества старение элементов приводит к потерям мощности более чем на 30%.

При выборе солнечной батареи важным параметром считается такой параметр, как выходное номинальное напряжение, которое зависит от количества полупроводниковых элементов в схеме. Стандартный модуль рассчитан на напряжение 12 В и состоит из 36 элементов. Их различают по мощности. Для увеличения тока используют параллельное соединение, а для увеличения напряжения последовательное соединение. Напряжение каждого элемента составляет 0,5 В, при присоединении 36 штук выходное напряжение равно примерно 18 вольт. Этого напряжения вполне достаточно как для заряда аккумулятора, так и для присоединения преобразователей с 12 на 220 В. Если брать модуль, в котором содержится 72 элемента, то выходное напряжение будет составлять 24 В.

Схема солнечной батареи.

Если 72 элементная батарея рассчитана на 12 вольт, то скорее всего это конструкция не из цельных полупроводниковых составляющих, а из их частей, соединенных по смешанной схеме. Смешанная схема представляет собой как параллельное, так и последовательное соединение кристаллов солнечных элементов. Приобретать такую конструкцию не рекомендуется по причине низкой надежности из-за большого количества соединений с большей вероятностью появления микротрещин.

Какие модули относят к нестандартным? Модуль, который состоит не из 36 и не 72 элементов. Для того чтобы его соединить с системой, необходим специальный контроллер. Выбирая солнечный модуль, руководствуйтесь значение необходимого напряжения для системы (12, 24, 48 В).

Популярные производители

Чтобы система работала долго, а показатели из технической документации не отличались от реальных, стоит выбирать изделия проверенных изготовителей. Не стоит экономить на качестве, при покупке солнечных батарей это недопустимо. Лучшие варианты на сегодня такие:

  1. LG Energy. Занимается разработкой панелей около 30 лет и производит их в промышленных масштабах 11 лет. Завод расположен в Южной Корее, батареи имеют гарантию в 25 лет и относятся к среднему и высокому ценовым сегментам. Продукция премиум-класса популярна в странах Северной Америки и Европы.
  2. SunPower. Американская компания, выпускающая солнечные батареи с длительным сроком службы. За 25 лет емкость панелей уменьшается всего на 8%. Изделия дорогие, но считаются одними из самых долговечных на рынке.
  3. REC Group. Норвежская фирма с производством в Сингапуре производит надежные панели, дает гарантию на 20 лет, причем емкость падает медленно, поэтому срок службы намного больше гарантийного. Есть варианты из средней и дорогой категорий.
  4. Panasonic. Еще один известный бренд. Солнечные батареи этого производителя имеют гарантию 25 лет, качество высокое и срок службы длительный. Изделия хорошо подходят для использования в средних широтах и имеют эффективность 18-20%.
  5. Jinko Solar. Китайская компания, которая продает продукцию во всем мире и считается одной из лучших в недорогом ценовом сегменте. Продукция имеет гарантию 25-30 лет, изделия качественные, несмотря на малую цену. Есть варианты как бюджетного, так и среднего класса.
  6. Trina Solar. Еще один китайский бренд, который предлагает дешевые панели с неплохими рабочими показателями, но гарантия тут намного меньше – 10 лет, за этот период емкость падает примерно на 10%. Многие специалисты считают этот вариант оптимальным по соотношению цены и качества.
  7. Longi Solar. Компания из Китая, которая недавно вышла на мировой рынок, но внутри страны продает недорогие солнечные батареи уже давно. При производстве используются монокристаллы, что обеспечивает хорошую работу даже при низких температурах и плохой освещенности. Эффективность составляет от 18 до 20%.

SunPower – одни из самых долговечных батарей.

Пример расчета энергопотребления приборов

Всегда в доме работает холодильник, телевизор, компьютер, машина стиральная, бойлер, утюг, микроволновая печь и иные бытовые приборы, без которых жизнь становится некомфортной. Помимо этого, как минимум 100 лампочек используется для освещения (пусть они будут энергосберегающими). Все это должно следует учесть при проведении расчета мощности солнечных батарей, монтируемых в доме.

В таблице приводятся данные по их мощности, времени функционирования, потребляемой энергии и т.д. Все они работают круглый год:

ПриборМощностьПродолжительность использования в суткиСуточное потребление
Лампочки для освещения200 Втпримерно 10 часов2 кВт*ч
Холодильник500 Вт3 часа1,5 кВт*ч
Ноутбук100 Втдо 5 часов0,5 кВт*ч
Стиральная машина500 Вт6 часов3 кВт*ч
Утюг1500 Вт1 час1,5 кВт*ч
Телевизор150 Вт5 часов0,8 кВт*ч
Бойлер на 150 литров1,2 кВт5 часов6 кВт*ч
Инвертор20 Вт24 часа0,5 кВт*ч
Контроллер5Вт24 часа0,1 кВт*ч
Микроволновая печь500 Вт2 часа3 кВт*ч

Сделав несложный подсчет, выходим на итоговое суточное энергопотребление – 18,9 кВт/ч. Сюда добавить нужно мощность дополнительной техники, пользуются которой не каждый день – электрочайника, комбайна кухонного, насоса, фена и пр. В среднем получится в сутки не менее 25 кВт/ч.

Рекомендуем:

  • Инвертор для солнечных батарей: виды, обзор моделей, особенности подключения, критерии выбора и цена
  • Лучшие гибридные солнечные инверторы: сходства и отличия, цена, где купить — ТОП-6
  • Кемпинговый фонарь на солнечных батареях: особенности, функции, характеристики, цена — ТОП-7

Следовательно, месячное потребление энергии составит 750 кВт/ч. Чтобы текущие расходы покрывались, солнечная батарея должна вырабатывать не меньше итоговой цифры, т.е. 750 кВт.

Преимущества и недостатки применения батарей

У солнечных панелей, как и у любых устройств, есть достоинства и недостатки, связанные с принципом действия и особенностями конструкции.

Достоинства солнечных батарей:

  • Автономность. Позволяют обеспечить электроэнергией удаленные здания или светильники и работу мобильных устройств в походных условиях.
  • Экономичность. Для выработки электроэнергии используется свет солнца, за который не нужно платить. Поэтому ФЭС (фотоэлектрические системы) окупаются за 10 лет, что меньше срока службы, составляющего более 30. Причем 25–30 лет – это гарантийный срок, а фотоэлектростанция будет работать и после него, принося прибыль владельцу. Конечно, необходимо учесть периодическую замену инверторов и аккумуляторных батарей, но все равно, использование такой электростанции помогает экономить средства.
  • Экологичность. При работе устройства не загрязняют окружающую среду и не шумят, в отличие от электростанций, работающих на других видах топлива.

Кроме достоинств, у ФЭС есть недостатки:

  • Высокая цена. Такая система стоит довольно дорого, особенно с учетом цены на аккумуляторные батареи и инверторы.
  • Большой срок окупаемости. Средства, вложенные в фотоэлектростанцию, окупятся только через 10 лет. Это больше, чем основная масса других вложений.
  • Фотоэлектрические системы занимают много места – всю крышу и стены здания. Это нарушает дизайн сооружения. Кроме того, аккумуляторные батареи большой емкости занимают целую комнату.
  • Неравномерность выработки электроэнергии. Мощность устройства зависит от погоды и времени суток. Это компенсируется установкой аккумуляторных батарей или подключением системы к сети. Это позволяет в хорошую погоду днем продавать излишки электроэнергии электрокомпании, а ночью наоборот подключать оборудование к централизованному электроснабжению.

Сравнение характеристик солнечных коллекторов

Самым главным показателем солнечного коллектора является КПД. Полезная производительность разных по конструкции солнечных коллекторов зависит от разности температур. При этом плоские коллекторы значительно дешевле трубчатых.

Значения КПД зависят от качества изготовления солнечного коллектора. Цель графика показать эффективность применения разных систем в зависимости от разницы температуры

При выборе солнечного коллектора стоит обратить внимание на ряд параметров показывающих эффективность и мощность прибора. Для солнечных коллекторов есть несколько важных характеристики:

Для солнечных коллекторов есть несколько важных характеристики:

  • коэффициент адсорбции – показывает отношение поглощенной энергии к общей;
  • коэффициент эмиссии – показывает отношение переданной энергии к поглощенной;
  • общая и апертурная площадь;
  • КПД.

Апертурная площадь – это рабочая площадь солнечного коллектора. У плоского коллектора апертурная площадь максимальна. Апертурную площадь равна площади абсорбера.

Способы подключения к системе отопления

Поскольку устройства на солнечной энергии не могут обеспечить стабильное и круглосуточное снабжение энергией, необходима система устойчивая к этим недостаткам.

Для средней полосы России солнечные устройства не могут гарантировать стабильный приток энергии, поэтому используются как дополнительная система. Интегрирование в существующую систему отопления и горячего водоснабжения отличается для солнечного коллектора и солнечной батареи.

Схема с водяным коллектором

В зависимости от целей использования теплового коллектора применяются разные системы подключения. Вариантов может быть несколько:

  1. Летний вариант для горячего водоснабжения
  2. Зимний вариант для отопления и горячего водоснабжения

Летний вариант наиболее простой и может обходится даже без циркуляционного насоса, используя естественную циркуляцию воды.

Вода нагревается в солнечном коллекторе и за счет теплового расширения поступает в бак-аккумулятор или бойлер. При этом происходит естественная циркуляция: на место горячей воды из бака засасывается холодная.

Зимой при отрицательных температурах прямой нагрев воды не возможен. По закрытому контуру циркулирует специальный антифриз, обеспечивая перенос тепла от коллектора к теплообменнику в баке

Как любая система основанная на естественной циркуляции работает не очень эффективно, требуя соблюдения необходимых уклонов. Кроме того, аккумулирующий бак должен быть выше чем солнечный коллектор. Чтобы вода оставалась как можно дольше горячей бак необходимо тщательно утеплить.

Если Вы хотите действительно добиться максимально эффективной работы солнечного коллектора, схема подключения усложниться.

Чтобы ночью коллектор не превратился в радиатор охлаждения необходимо прекращать циркуляцию воды принудительно

По системе солнечного коллектора циркулирует незамерзающий теплоноситель. Принудительную циркуляцию обеспечивает насос под управлением контроллера.

Контроллер управляет работой циркуляционного насоса основываясь на показаниях как минимум двух температурных датчиков. Первый датчик измеряет температуру в накопительном баке, второй – на трубе подачи горячего теплоносителя солнечного коллектора.

Как только температура в баке превысит температуру теплоносителя, в коллекторе контроллер отключает циркуляционный насос, прекращая циркуляцию теплоносителя по системе. В свою очередь при понижении температуры в накопительном баке ниже заданной включается отопительный котел.

Новым словом и эффективной альтернативой солнечным коллекторам с теплоносителем стали системы с вакуумными трубками, с принципом действия и устройства которых мы предлагаем ознакомиться.

Схема с солнечной батареей

Было бы заманчиво применить схожую схему подключения солнечной батареи к электросети, как это реализовано в случае солнечного коллектора, накапливая поступившую за день энергию. К сожалению для системы электроснабжения частного дома создать блок аккумуляторов достаточной емкости очень дорого. Поэтому схема подключения выглядит следующим образом.

При снижении мощности электрического тока от солнечной батареи блок АВР (автоматическое включение резерва) обеспечивает подключение потребителей к общей элетросети

С солнечных панелей заряд поступает на контроллер заряда, который выполняет несколько функций: обеспечивает постоянную подзарядку аккумуляторов и стабилизирует напряжение. Далее электрический ток поступает на инвертор, где происходит преобразование постоянного тока 12В или 24В в переменный однофазный ток 220В.

Увы, наши электросети не приспособлены для получения энергии, могут работать только в одном направлении от источника к потребителю. По этой причине вы не сможете продавать добытую электроэнергию или хотя бы заставить счетчик крутиться в обратную сторону.

Использование солнечных батарей выгодно тем, что они предоставляют более универсальный вид энергии, но при этом не могут сравнится по эффективности с солнечными коллекторами. Однако последние не обладают возможностью накапливать энергию в отличие от солнечных фотоэлектрических батарей.

Устанавливаем уровень напряжения для солнечных батарей

Чтобы понять, сколько дают энергии солнечные батареи, нужно определиться с уровнем их рабочего напряжения. Это значение всегда кратно 12 вольтам, поскольку такое напряжение характерно большинству аккумуляторов. Чаще всего используются инверторы, контроллеры и солнечные панели с напряжением в 12, 24 или 48 вольт.

Для систем с более высоким уровнем напряжения можно применять питающие кабели с меньшим сечением, что обеспечивает высокую надежность соединений.

В тоже время, аккумуляторы по 12 вольт, если они сломаются, можно заменять поочередно. Особенностью эксплуатации батарей с напряжением в 24 вольта будет необходимость замены узлов только попарно. В случае использования системы с напряжением в 48 вольт необходимо будет менять сразу 4 батареи, расположенных на одной ветке

Кроме того, при неосторожном обращении с батареями в 48 вольт можно получить удар электрическим током

Рабочее напряжение электросистемы напрямую влияет на то, сколько дает солнечная батарея. Этот фактор учитывается при подборе необходимого оборудования.

Зависимость между мощностью инвертора и пиковыми нагрузками выглядит так:

  • 3-6 кВт – 48 вольт;
  • 1,5-3 кВт – 24 или 48 вольт;
  • до 1,5 кВт – 12, 24 или 48 вольт.

В рассматриваемом примере выбор между сложностями при замене аккумуляторов и надежностью электропроводки сделаем в пользу последнего. Уровень рабочего напряжения составит 24 вольта.

Преимущества и недостатки

Плюсы использования подобного отопления:

  • тепло доступно в любое время года;
  • есть возможность настраивания необходимого уровня температуры;
  • частичная электроэнергия и отопление становятся автономными, не требуя оплаты;
  • у батареи долгий срок службы без необходимости ремонта.

Минусы

Минусы отопления от солнечных батарей:

  • батареи неактуальны в некоторых климатических поясах с коротким световым днем;
  • высокие первоначальные затраты: на семью из 4-5 человек нужна установка примерно на 14-22 м²;
  • требовательны к расположению: размещение должно быть на южной части, куда смогут беспрепятственно попадать лучи;
  • крыша должна быть примерно 35-45 м², чтобы нормально обогреть дом.

Однако минусы не останавливают пользователей: установки служат очень долго и показывают высокую эффективность, что и делает их все более популярными.

https://youtube.com/watch?v=Oks01OKCzQM

Характеристики кремниевых солнечных батарей

Кварцевый порошок — это сырьевой материал для кремния. Данного материала на Урале и Сибири очень много, поэтому именно кремниевые солнечные панели есть и будут в большем обиходе, чем остальные подтипы.

Монокристалл

Монокристаллические пластины (mono–Si) содержат в себе синевато–темный цвет, равномерно размещенный на всей пластине. Для таких пластин применяется максимально очищенный кремний. Чем он чище, тем солнечные батареи имеют КПД выше и самую наибольшую стоимость на рынке таких устройств.

Преимущества монокристалла:

  1. Наивысший КПД — 17–25%.
  2. Компактность — задействование сравнительно с поликристаллом меньшей площади для развертывания оснащения в условиях тождества мощности.
  3. Износостойкость — бесперебойная работа выработки электроэнергии без замены основных комплектующих обеспечивается за четверть века.

Недостатки:

  1. Чувствительность к пыли и грязи — осевшая пыль не дает батареям работать со светом от светила и соответственно уменьшает КПД.
  2. Высокая цена равна увеличенному сроку окупаемости.

Так как mono–Si нуждаются в ясной погоде и лучах Солнца, панели устанавливаются на открытых местах и поднятые на высоту. Насчет местности, то предпочтение отдается местности, в которой ясная погода обыденность, а количество солнечных дней приближено к максимальному.

Поликристалл

Поликристаллические пластины (multi–Si) наделены неравномерным синим окрасом из–за разнонаправленности кристаллов. Кремний не настолько чист, как в используемых mono–Si, поэтому КПД несколько ниже, вместе со стоимостью таких солнечных батарей.

Положительные факты поликристалла:

  1. Коэффициент полезного действия 12–18%.
  2. При неблагоприятной погоде КПД лучше, чем у Mono–Si.
  3. Цена данного агрегата меньше, а сроки окупаемости намного ниже.
  4. Ориентация на солнце не принципиальна, поэтому можно размещать их на крышах различных строений.
  5. Длительность эксплуатации — эффективность поглощения энергии и аккумулирования электричества падает до 20% спустя 20 лет непрерывной эксплуатации.

Недостатки:

  1. КПД уменьшен до 12–18%.
  2. Требовательность к месту. Для развертывания нормальной станции выработки электроэнергии нужно больше места, чем при задействовании батареи из монокристалла.

Аморфный кремний

Технология производства панелей существенно отличается от предыдущих двух. В приготовлении задействованы горячие пары, опускающиеся на подложку без образования кристаллов. При этом используется меньше производственного материала и это учитывается при формировании цены.

Преимущества:

  1. Коэффициент полезного действия — 8–9% во втором поколении и до 12% в третьем.
  2. Высокий коэффициент полезного действия при не совсем солнечной погоде.
  3. Возможность использования на гибких модулях.
  4. Эффективность батарей не падает вниз при повышении температуры, что позволяет монтировать их на всякие поверхности с нестандартной формой.

Основным недостатком можно считать меньший КПД (если сравнивать с иными аналогами), в связи с чем требуется большая площадь для получения сопоставимой отдачи от оборудования.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий