Принцип работы струйного насоса: технические характеристики

Типовые струйные насосы

На рис. 2.36 изображен разрез горизонтального, двухступенчатого, с двумя конденсаторами поверхностного типа, охлаждаемыми забортной водой, пароструйного воздушного насоса — главного эжектора.

Основой конструкции являются сдвоенные корпуса 6 и 8 конденсаторов I и II ступеней, которые лапами 14 крепятся к фундаменту. Ступени сжатия размещены сверху на корпусах конденсаторов параллельно его оси.

В состав I (II) ступени сжатия входят: литой стальной корпус 23 (3) с приемным патрубком 24 (5), стальное сопло рабочего пара 25 (2) с деталями его крепления, стальная паровая коробка 22 (1) со стальным цилиндрическим фильтром, приваренным к крышке, и штуцером подвода рабочего пара, латунный диффузор 26 (4), стальное соединительное колено 27(7).

В состав конденсатора I (II) ступени входят: стальной цилиндрический корпус 6 (8) с фланцами трубных досок и патрубками, внутренние 12 (19) и внешние 11 [18) латунные трубные доски, мельхиоровые трубки 13у развальцованные в двойных трубных досках и образующие поверхность теплообмена, стальные поперечные перегородки 15, обеспечивающие три изменения направления движения паровоздушной смеси в межтрубном пространстве, бронзовая литая крышка 10 (9) с двумя цинковыми протекторами и фланцем для трубопровода забортной воды. Два конденсатора соединены с помощью промежуточного кольца 17 и специальных шпилек 20 в единый теплообменный аппарат. Все детали крепят одну к другой с помощью стальных болтов, шпилек и гаек. Приемный патрубок I ступени сжатия соединен трубопроводом с главным конденсатором турбины, а нагнетательный — с конденсатором I ступени, приемный патрубок II ступени сжатия соединен с конденсатором I ступени, а нагнетательный — с конденсатором II ступени. Конденсат из конденсаторов сливается через патрубки 16 (21), а воздух из конденсатора II ступени выходит через атмосферный клапан 28 — пластинчатый невозвратный клапан.

Работает паровоздушный эжектор следующим образом: к соплам ступеней сжатия подается рабочий пар из вспомогательного паропровода, I ступень сжатия отсасывает паровоздушную смесь (ПВС) из главного конденсатора турбины и создает в нем заданную величину вакуума. Отсасываемая ПВС содержит около 60% водяного пара. После I ступени сжатия добавляется рабочий пар I ступени, и состав ПВС изменяется. Под более высоким давлением ПВС подается в межтрубное (паровое) пространство конденсатора I ступени, где за счет теплообмена с забортной водой, прокачиваемой по трубкам, водяной пар конденсируется, конденсат сливается в систему; Вторая ступень сжатия отсасывает ПВС из конденсатора I ступени, сжимает ее, изменяя состав в результате добавления рабочего пара, и подает в межтрубное пространство конденсатора II ступени. Пар конденсируется, конденсат сливается в систему, а оставшийся воздух выбрасывается через атмосферный клапан в отсек. Давление в конденсаторе II ступени должно быть выше давления в отсеке на величину сопротивления атмосферного клапана. Забортная вода прокачивается насосом последовательно по трубкам обоих конденсаторов.

Вспомогательный эжектор имеет аналогичную компоновку, но только одну ступень сжатия. Пар от уплотнений турбины поступает в конденсатор I ступени, конденсируется, а оставшийся насыщенный воздух отсасывается ступенью сжатия и подается в конденсатор II ступени.

Технические показатели помп струйного типа

Все струйные насосы чаще всего имеют невысокие производственные характеристики. Особенно это касается бытовых агрегатов. Так, устройства для домашнего применения способны перекачивать воду из скважины в объеме всего 15-17 л/сек. При этом более сложный профессиональный механизм подаёт от 30 до 50 литров воды в секунду. Но такой показатель формирует и более высокую цену на механизм.

Высота подъема воды для самого простого струйного насоса не превышает отметку 15 метров. Иногда есть вероятность подъема жидкости с глубины 20 метров, но в этом случае производительность и КПД будут снижены еще больше. Если же вопрос идёт о более сложном и мощном оборудовании, то здесь струйный агрегат способен поднимать воду с глубины 50 метров.

Виды и классификация насосов

Насос – тип гидравлической машины, который перемещает жидкость путем всасывания и нагнетания, используя кинетическую или потенциальную энергию. Насос необходим для использования в противопожарных технических средствах, для отвода жидкостей в жилых кварталах, при подаче топлива и многих других целях. По области применения, конструкции, принципу действия существует разные виды и типы насосов. При использовании насосов для различных целей необходимо знать, какие виды бывают и чем они отличаются.

Насосы для систем пожаротушения

Основным требованием к насосам системы пожаротушения является подача воды под высоким давлением. Наиболее часто используемыми являются центробежные насосы, так как они позволяют быстро закачать воду за счет центробежной силы. Важными пунктами при выборе насоса для пожаротушения являются:

  • напор;
  • частота вращения колеса;
  • КПД;
  • высота всасывания;
  • объем перемещаемой воды.

В зависимости от количества колес с лопастями насосы бывают одноступенчатыми и многоступенчатыми. Многоступенчатые агрегаты позволяют создать более высокое давление, что в свою очередь, влияет на напор и высоту подаваемой жидкости.

При установке систем пожаротушения в зданиях стоит учитывать, что оборудование необходимо периодически проверять, так как застой может вызвать затруднения при запуске. На пожарных машинах устанавливают центробежные насосы и вспомогательные агрегаты.

Вспомогательные насосы заполняют корпус центробежного насоса жидкостью и отключаются автоматически.

Масляные и топливные насосы

Среди промышленных типов насосов выделяют масляные и топливные устройства, устанавливаемые на двигателях автомобилей и машин и двигателях внутреннего сгорания.

Масляные насосы обеспечивают снижение силы трения между взаимодействующими частями двигателя. Они бывают регулируемыми и нерегулируемыми. В двигателях автомобиля устанавливаются роторные или шестеренные насосы для перекачивания масла.

Топливные насосы устанавливаются в автомобилях в обязательном порядке. Они обеспечивают доставку топлива из бака в камеру сгорания. В зависимости от конструкции топливные насосы бывают: механические и электрические.

Погружные насосы

Погружные насосы применяются при работе на глубине более восьми метров. Все типы погружных насосов обладают системой охлаждения, а также выполнены из прочного материла, помогающего избежать деформации под давлением. Погружные насосы бывают центробежными и вибрационными. В насосах второго типа жидкость всасывается с помощью вибрационного или электромагнитного механизма.

При выборе насоса важно учитывать большое количество факторов:

  • цель использования;
  • место использования;
  • необходимость установки вспомогательных агрегатов;
  • габариты насоса;
  • способ работы насоса.

(5 5,00 из 5) Загрузка…

Какие бывают насосные станции

Насосная станция представляет собой собранную в моноблок конструкцию, основной частью которой является центробежный электронасос, размещенный над баком гидроаккумулятора, ее обязательные элементы — реле давления и манометр, закрепленные на пятивходовом фитинге.

Принцип работы центробежного электронасоса состоит в подаче всасываемой жидкости в центр рабочего колеса с лопастями, которые при вращении благодаря центробежной силе выталкивают ее наружу через боковой выходной патрубок.

Стандартный центробежный насос имеет в центре гидравлического отсека входное отверстие и расположенное перпендикулярно его оси выходное в боковой части, но встречаются насосы с другой конструкцией.


Рис. 5 Встроенный эжектор — схема

Станции со встроенным эжектором

Насосные станции со встроенным эжектором имеют в своем составе центробежный электронасос, в гидравлической части которого размещен эжекторный узел. Принцип работы подобной системы довольно прост — всасываемая вода поступает на центробежное рабочее колесо, которое выбрасывает ее через боковой патрубок. Одновременно часть жидкости, которой вращение колеса придало кинетическую энергию, направляется по эжекторному каналу в форсунку и выталкивается из нее под давлением. Ускоренный за счет суженой части форсунки поток смешивается с транспортируемым, передавая ему свою энергию, и одновременно втягивая за счет пониженного давления на выходе. Таким образом, достигается существенное увеличение глубины погружения всасывающего патрубка, которая в некоторых моделях доходит до 50 метров.

Отличительной особенностью подобных насосов является входное отверстие, смещенное относительно центральной оси (в обычных центробежных электронасосах подобное расположение также не редкость), в составе насосных станций подобные агрегаты встречаются очень редко благодаря приведенным выше причинам (низкий КПД).


Рис. 6 Устройство электронасоса со встроенным эжектором

Станции с выносным эжектором

Насосная станция с выносным эжектором имеет существенное преимущество перед оборудованием со встроенным эжекторным узлом — она может работать в обычном режиме, поднимаем воду с глубины не более 9 метров, а при необходимости к ней всегда можно подключить приспособление для увеличения глубины всасывания.

Для этого в гидравлической части корпуса имеются два отверстия разных диаметров со стандартными размерами 1 1/2 и 1 дюйм, к большему подключают напорный трубопровод, а ко второму рециркуляционный, подающий воду на эжекторную форсунку. Сам эжекторный узел помещают в водозаборный источник вместе с трубопроводами. Так как без подачи жидкости в эжектор она не будет подниматься с большой глубины, перед началом работы всю систему заполняют водой.

По внешнему виду электронасосы с выносным эжектором отличаются от типовых моделей наличием двух расположенных рядом отверстий в гидравлическом отсеке корпуса. Насосная станция с внешним эжектором выпускается многими отечественными и зарубежными производителями, наибольшей известностью пользуется модель Marina от итальянской фирмы Speroni, также на рынке часто встречаются другие итальянцы: Aquatica, Quattro Elementi, отечественные Unipump.


Рис. 7 Станция с выносным эжектором и его подключение

Подключение

В случае с внутренним эжектором, если он включен в конструкцию самого насоса, монтаж системы мало чем отличается от установки безэжекторного насоса. Достаточно просто присоединить трубопровод от скважины к всасывающему входу насоса и обустроить напорную линию с сопутствующим оборудованием в виде гидроаккумулятора и автоматики, которая будет управлять работой системы.

Для насосов с внутренним эжектором, в которых он закрепляется отдельно, а также для систем с внешним эжектором добавляется два дополнительных этапа:

  • Прокладывается дополнительная труба для рециркуляции от напорной линии насосной станции к входу эжектора. Подключается основная труба от него к всасу насоса.
  • К всасу эжектора подключается патрубок с обратным клапаном и грубым фильтром для забора воды из скважины.

При необходимости в линию рециркуляции устанавливается вентиль для настройки. Это особенно выгодно, если уровень воды в скважине находится много выше, чем рассчитана насосная станция. Можно уменьшать напор в эжектор и тем самым поднимать напор в системе водоснабжения. У некоторых моделей имеется уже встроенный вентиль для подобной настройки. О его размещении и способе регулировки указано в инструкции к оборудованию.

3.9.2. Водоструйный насос (эжектор)

Струйный насос – насос трения, в котором одна жидкая среда перемещается внешним потоком другой жидкой среды.

Струйные насосы для нагнетания называются инжекторами, для отсасывания – эжекторами, для подъема – гидроэлеваторами.

Действие струйного насоса основано на непосредственной передаче кинетической энергии одним потоком (рабочим) другому, имеющему меньшую кинетическую энергию (перекачиваемому – эжектируемому). Рабочая и перекачиваемая (эжектируемая) жидкости могут быть одинаковыми и различными. Струйные насосы, в которых рабочей и эжектируемой жидкостями является вода, называются водоструйными.

Водоструйный насос можно легко получить на основе трубы Вентури, организовав поток жидкости по оси трубы с высокой скоростью. На рис. 33 приведена принципиальная схема водоструйного насоса (эжектора).

В водоструйном насосе рабочий поток с расходом под большим давлением по трубопроводу 1 с соплом 2 на конце поступает в камеру всасывания 3, сообщенной всасывающим трубопроводом 7 с расходным резервуаром 8. Струя воды, вылетая из сопла 2 с большой скоростью, создает разряжение в камере всасывания 3 и соответственно во всасывающем трубопроводе 7. За счет вакуума из расходного резервуара 8 по всасывающему трубопроводу 7 подсасывается вода в количестве (расход эжектируемой – перекачиваемой жидкости).

Рис. 93. Схема водоструйного насоса (эжектора):

1 – трубопровод рабочей жидкости; 2 – сопло; 3 – камера всасывания;

4 – камера смешения; 5 – диффузор; 6 – напорный трубопровод

суммарного потока; 7 – всасывающий трубопровод; 8 – резервуар

расходный; – расход рабочего потока жидкости;- расход

эжектируемой (перекачиваемой) жидкости; – расход общего потока жидкости.

Из камеры смешения 4 общий поток с расходом направляется в диффузор 5, где скорость падает, и создается давление, необходимое для движения жидкости по напорному трубопроводу 6.

Струйные наосы обладают рядом существенных достоинств: простота конструкции, надежность работы, легкость изготовления, небольшие габариты и стоимость, простота эксплуатации.

Недостатком водоструйных насосов является низкий КПД () и относительно большой расход рабочей жидкости, (в раза превышающий расход эжектируемой жидкости).

КПД водоструйного насоса можно определить с помощью зависимости

. (335)

где

– расход воды во всасывающей трубе (подача водоструйного насоса), ;

– расход воды, подаваемой к водоструйному насосу по напорному трубопроводу (рабочий расход), ;

– полная высота подъема перекачиваемой жидкости, ;

– напор, подводимый к насосу рабочей жидкости, .

Среднее значение КПД водоструйных насосов колеблется в пределах .

Напор, развиваемый водоструйным насосом, зависит от ско­рости истечения воды из сопла, которая обычно составляет . Для достижения такой скорости вода должна подво­диться к насосу под напором . Скорость во всасываю­щем и напорном трубопроводах равна .

Отношение площади сечений горловины к площади сечения сопла составляет обычно , а отношение сечения площадей всасывающей трубы и сопла принимается равным .

Классификация ПН

Пожарные машины комплектуются тремя видами агрегатов.

Струйные

Один из самых популярных видов оборудования, которое устанавливается на технику, задействованную во время тушения пожаров. Струйные ПН бывают двух типов:

  1. Водоструйные, которые устанавливают на каждую спецмашину. Второе их название – гидроэлеватор. С его помощью производят забор воды из водоисточников с заболоченными берегами, которые представляют трудность для подъезда машин. Второе назначение ВПН – откачка воды из помещений. Гидроэлеватор относят к устройствам эжекторного типа с трансформацией потенциала в кинетическую энергию.
  2. Газоструйные, которые обеспечивают заполнение всасывающих рукавов и центробежных агрегатов водой. Используют отработанные среды двигателя внутреннего сгорания. Газы проходят по корпусу, в результате создается разряженная зона, благодаря которой и возможен напор на насосе пожарного автомобиля.

Визуально работу водоструйного насоса можно представить на схеме:

Объемные

Это устройства, в которых передвижение воды или газа обеспечивается изменением объема рабочей камеры. Они также делятся на несколько типов:

Водокольцевые. Объем камеры меняется при помощи использования роторной установки. Коэффициент полезного действия в них очень низкий, и перед началом в агрегат необходимо заливать дополнительную жидкость.

Поршневые. В этих насосах для пожарного автомобиля изменение объема зависит от работы поршневого элемента. Главный плюс такого оборудования – высокий КПД и хорошая всасываемость, минус – невозможность регулировки подачи огнетушащих средств.

Пластинчатые. В них работают лопатки ротора. За счет прижимания лопастей создается дополнительный объем. За счет их же движения жидкость проталкивается к выходу.

Шестеренчатые. Их работа обеспечивается двумя колесами.

Центробежные

Это оборудование для автоцистерн и автонасосов. Оно различается по нескольким параметрам:

  • Давлению: до 2 МПа, до 5 МПа и установки, создающие оба варианта.
  • Количеству колес: стандартные 1-ступенчатые для создания нормального напора, 2-ступенчатые и выше – для поддержания высокого давления.
  • Расположению вала: наклонный, вертикальный, горизонтальный.
  • Напору: норма до 100 метров, высокий уровень – до 300, комбинированный тип – установки, создающие и нормальный, и высокий уровень напора.
  • Расположению в ПА: впереди, посередине, сзади.

Принцип действия центробежного агрегата основан на вращении колеса, которое за счет своего движения передает энергию жидкости. Чем выше скорость вращения, тем больше давление, под которым «зуб» выдает воду в диффузор.

Для предупреждения закручивания воды на входе устанавливают разделитель. Чтобы увеличить скорость делают переход большего сечения в меньшее. Дополнительно устанавливают пенообразователь. Для распределения жидкости в рукава используют коллектор.

Одно из условий безопасности эксплуатации центробежных агрегатов – соблюдение температурного режима. Огнетушащее вещество нельзя охлаждать ниже 30°С. Именно поэтому на ПА насосы устанавливают в отделение, где поддерживается плюсовая температура.

Перед включением систему заполняют водой, чтобы предупредить появление примесей воздуха. Максимальный размер частиц, которые могут присутствовать при этом в воде, – 3 мм, а их концентрация на общий объем – менее 0.5%.

У центробежных агрегатов есть свои плюсы:

  • постоянное давление сразу после подключения к водоисточнику;
  • длительный срок эксплуатации;
  • возможность подключения к различным типам ПА;
  • высокий уровень КПД от 58%.

Минусы также присутствуют:

  • изменение давление отражается на КПД;
  • отсутствует возможность самостоятельного всасывания жидкости;
  • не работает, если в воде присутствуют загрязнения крупных фракций (камни, тина).

Типы струйных аппаратов

В промышленных масштабах используются два вида струйных установок: водо- и пароструйные. В первых рабочей средой выступает вода, во вторых — соответственно, пар. Принцип работы агрегатов по сути один и тот же, небольшое различие связано только со свойствами перекачиваемых сред.

Еще одна классификация струйных насосных устройств выделят ряд их модификаций:

  • эжекторы — предназначены исключительно для продуктов в жидком агрегатном состоянии;
  • элеваторы — востребованы в смесительных отопительных системах внутри зданий;
  • инжекторы — применяются в энергетических теплофикационных установках, здесь рабочей средой выступает пар.

Преимущества агрегатов

Как и любой тип насосных аппаратов, струйные обладают своими преимуществами:

  • надежность, длительная эксплуатация без ремонта (за счет простой конструкции, отсутствия трущихся и движущихся частей);
  • нет необходимости в регулярном техобслуживании (по этой же причине);
  • обширная сфера применения (решают многие промышленные и бытовые задачи);
  • работают в том числе с химически агрессивными продуктами, обладают низкой к ним чувствительностью;
  • обладают небольшими габаритами;

Относительными минусами оборудования являются низкий КПД (но это оправдано целями использования струйных агрегатов). Кроме того, на сопло аппаратов требуется подача больших объемов продукта.

Особенности эксплуатации

Интегрировать насос в рабочую инфраструктуру можно только после того, как был произведен анализ совместимости агрегата с обслуживаемой жидкостью. Что касается рабочих мероприятий, то в перечень задач рабочего персонала будет входить поддержание достаточного объема жидкости в канале насоса и обеспечение надлежащего уровня безопасности. Обычно струйные насосы оснащаются широким перечнем измерительных датчиков и приборов, которые показывают уровень давления, скорость перемещения рабочей среды, температуру и т. д. Пользователь должен отслеживать эти значения, сопоставляя их с рекомендованными. Остановка агрегата начинается с закрытия клапана. Далее производится форвакуумная перекачка оставшейся жидкости и физическое отсоединение конструкции.

Центробежные насосы

В данном виде устройств основным рабочим элементом является диск, на котором зафиксированы лопатки. Они имеют наклон в сторону, противоположную направлению движения. Лопатка закрепляется на валу, который приводится в движение электрическим двигателем. В конструкции может быть использовано одно или два колеса. Во втором случае лопатки соединяют их между собой.

Принцип действия центробежного насоса основан на том, что вода через входной патрубок поступает в рабочую камеру. Среда, захваченная вращающимися лопатками, начинает двигаться вмести с ними. Центробежная сила перемещает воду от центра колеса к стенкам камеры, где создается повышенное давление. За счет него вода выбрасывается через выходное отверстие. Благодаря тому, что вода движется постоянно, насосы такого типа не создают пульсацию в водопроводе.

Использование центробежных насосов в бытовых целях позволяет выполнить различные задачи. Часто они используются для добычи воды из скважины или колодца. Откачанную таким образом воду можно использовать для обустройства водоснабжения дома, а также применить для полива участка. С помощью моделей центробежного типа можно обеспечить циркуляцию теплой воды в отопительной системе: благодаря тому, что перекачивающий центробежный насос не дает пульсации, в системе не будет появляться воздух. Различные подвиды подобных насосов можно использовать для откачивания воды из подвалов или бассейна, для удаления фекальных масс, а также в качестве дренажных машин.

Разновидности насосов

Как отмечалось выше, конструкции различаются по типу обслуживаемой жидкости. Теперь стоит их рассмотреть подробнее. Наиболее популярные модели работают с водными носителями и смесями, которые не оказывают разрушающего воздействия на коммуникационную инфраструктуру агрегата. Такие устройства называются эжекторами и действуют по принципу откачки и подсоса в разных камерах. Распространены и струйные насосы, функция которых ориентирована на обслуживание агрессивных сред. Это эрлифты, применяемые в скважинах и коммуникационных системах, обеспечивающих передачу химически активных смесей и жидкостей с наличием твердых частиц. Менее популярны, но в некоторых случаях незаменимы инжекторы. Это аппараты, которые также работают с жидкостями, но функциональной средой в данном случае выступает пар.

Признаки и причины неисправностей, возможности восстановления работоспособности

Любые виды пожарных насосов могут выйти из строя, или снизить производительность по ряду причин:

  • неправильное подключение к водопроводным коммуникациям;
  • износ рабочих элементов устройства;
  • снижение герметичности соединений.

Если неисправности не критичны, их можно устранить. В таблице ниже приведены признаки неполадок, причины их появления и способы восстановления работоспособности.

ПризнакиПричиныСпособы ремонта
В вакуумной полости не формируется разряжение

1.      Открыт кран слива входного патрубка, не закрыта арматура, неплотное прилегание клапанов.

2.      Неплотное соединение элементов.

1.      Привести арматуру в нужную конфигурацию.

2.      Заменить расходники, подтянуть крепежи.

Устройство не заполняется рабочей средой

1.      Высота всасывания – больше, чем требуется.

2.      Расслоение рукава.

3.      Засорилась сетка.

1.      Снизить высоту.

2.      Поменять рукав.

3.      Прочистить сетку.

На манометре не отображается давление

1.      Прибор неисправен.

2.      В канале замерзла жидкость или образовался засор.

1.      Поменять прибор.

2.      Очистить канал.

Появление посторонних шумов и вибраций

1.      Появилась кавитация.

2.      Ослабли крепления.

3.      Износ подшипников.

4.      Попадание в устройство предметов.

1.      Корректировать настройки.

2.      Подтянуть крепления.

3.      Поменять подшипники.

4.      Очистить устройства.

При работе снижается сила струи

1.      Засорилась сетка.

2.      Нарушена герметичность соединений.

3.      Пропускают сальники.

1.      Прочистить засор.

2.      Поменять кольца.

3.      Поменять сальники, проверить объем масла.

Установка не дает должного напора

1.      Засор колеса.

2.      Износ уплотнителей.

3.      Попадание воздуха в систему.

4.      Повреждение лопаток колеса.

1.      Устранить загрязнения.

2.      Поменять уплотнители.

3.      Купировать попадание воздуха.

4.      Поменять колесо.

Смеситель не подает состав для образования пены

1.      Засор в магистрали.

2.      Засор на выходе из дозатора.

1.      Прочистить магистраль.

2.      Прочистить отверстие дозатора.

Перекачка воды из водоема

Изготовление эжектора и его подключение к насосному оборудованию

Разобравшись в том, что же такое эжектор и изучив принцип его действия, вы поймете, что изготовить это несложное устройство можно и своими руками. Зачем изготавливать эжектор своими руками, если его без особых проблем можно приобрести? Все дело в экономии. Найти чертежи, по которым можно самостоятельно сделать такое устройство, не представляет особых проблем, а для его изготовления вам не потребуются дорогостоящие расходные материалы и сложное оборудование.

Как сделать эжектор и подключить его к насосу? Для этой цели вам необходимо подготовить следующие комплектующие:

  • тройник с внутренней резьбой;
  • штуцер;
  • муфты, колена и другие фитинговые элементы.

Комплектующие для самодельного эжектора

Изготовление эжектора осуществляется по следующему алгоритму.

  1. В нижнюю часть тройника вкручивают штуцер, причем делают это так, чтобы узкий патрубок последнего оказался внутри тройника, но при этом не выступал с его обратной стороны. Расстояние от торца узкого патрубка штуцера до верхнего торца тройника должно составлять порядка двух-трех миллиметров. Если штуцер чересчур длинный, то торец его узкого патрубка стачивают, если короткий, то наращивают при помощи полимерной трубки.
  2. В верхнюю часть тройника, которая будет соединяться с всасывающей магистралью насоса, вкручивают переходник с наружной резьбой.
  3. В нижнюю часть тройника с уже установленным штуцером вкручивают отвод в виде уголка, который будет соединяться с рециркуляционной трубой эжектора.
  4. В боковой патрубок тройника также вкручивают отвод в виде уголка, к которому посредством цангового зажима присоединяют трубу, подающую воду из скважины.

Самодельный эжектор в сборе

Все резьбовые соединения, выполняемые при изготовлении самодельного эжектора, должны быть герметичными, что обеспечивается применением ФУМ-ленты. На трубе, по которой будет осуществляться забор воды из источника, следует разместить обратный затвор и сетчатый фильтр, который защитит эжектор от засорения. В качестве труб, при помощи которых эжектор будет подключаться к насосу и накопительному баку, обеспечивающему рециркуляцию воды в системе, можно выбрать изделия как из металлопластика, так и из полиэтилена. Во втором варианте для монтажа нужны не цанговые зажимы, а специальные обжимные элементы.

Принцип работы струйного насоса

Принцип работы струйного насоса организован на передвижении среды различного агрегатного состояния по трубопроводу с вмонтированным в него соплом, которое конструктивно выполнено суженным. Благодаря сужению движение жидкости, а именно ее скорости, повышается. При этом энергия движения потока превращается в кинетическую энергию.

Всасывание жидкой среды происходит из патрубка, который в свою очередь соединяется с пространством усреднительно-смесительной камеры. После этого жидкие фазы соединяются и перемешиваются, и далее смесь движется по диффузору к потребителю. В этом случае уже производится обратное превращение энергии.

Другими словами, струйный насос не относится к нагнетательным устройствам в повседневном понятии, потому что он не обеспечивает избыточный напор на стороне нагнетательного патрубка. В струйном насосе, как описано выше, выполняется двойное превращение энергии гидравлики потока.

Обслуживание струйных насосов

Для приведения в действие струйного насоса достаточно лишь приготовить трубопроводы системы и подать к соплу рабочую жидкость. Многоступенчатые паровоздушные эжекторы вводят в действие последовательно, начиная с последней ступени, работающей в атмосферу. О нормальной работе ступени и всего эжектора судят по показаниям вакуумметров. Срыв в работе одной из ступеней сжатия приводит к срыву в работе всего эжектора. Срыв в работе может произойти из-за нарушения режима охлаждения конденсаторов, а чаще из-за засорения сопел окалиной, грязью, отложением солей.

Водоструйные эжекторы системы осушения откачивают воду за борт через невозвратно-управляемые клапаны. При вводе эжектора в работу вместе с рабочей водой в первый период за борт удаляется воздух из всасывающей магистрали, на отливе наблюдается прерывистая струя молочного цвета. В дальнейшем о нормальной работе эжектора судят по положению рычага отливного клапана, который должен находиться в открытом положении и слегка вибрировать. Снижение подачи эжектора может произойти при засорении приемных фильтров (сеток) на всасывающем трубопроводе. У всех струйных насосов снижение подачи и неустойчивая работа (вплоть до срыва) наблюдаются при уменьшении давления рабочей жидкости или при нарушении герметичности всасывающего трубопровода (вследствие подсоса воздуха).

Во время планово-предупредительных осмотров струйных насосов особое внимание необходимо обращать на чистоту внутренней поверхности, состояние и размеры проточной части сопла, а также на его установку по месту, т. е. на центровку и соблюдение указанного в формуляре расстояния от среза сопла до горла диффузора

на центровку и соблюдение указанного в формуляре расстояния от среза сопла до горла диффузора.

При подготовке к пуску пароструйного эжектора подается охлаждающая вода на холодильник эжектора, открывается секущий клапан и продувается паропровод рабочего пара через эжектор. После этого давление пара перед соплом поднимается до нормального и, как только вакуумметр будет показывать нормальную величину вакуума, медленно открывается клапан отсоса воздуха на эжектор. В работу сначала вводится эжектор последней ступени, остальные ступени вводятся по мере надобности.

Во время работы пароструйного эжектора производится наблюдение за нормальностью подачи и температурой воды перед холодильником эжектора, за давлением рабочего пара и величиной вакуума.

При остановке пароструйного эжектора закрывается приемный воздушный клапан, клапан рабочего пара и после достаточного охлаждения холодильника прекращается подача воды на него.

Пуск водоструйного эжектора производится открытием клапана подвода рабочей воды и всасывающего клапана.

Остановка водоструйного эжектора производится закрытием клапанов всасывания и рабочей воды.

При подготовке инжектора к пуску открывается водоприемный клапан и питательный клапан на котле. Затем открывается секущий паровой клапан и медленно переводится рукоятка пускового клапана. Как только из вестовой трубы выйдет весь воздух и покажется вода, пусковой клапан открывается на необходимую величину.

Запускать инжектор следует осторожно, чтобы не обжечься паром, выходящим из вестовой трубы

Поделитесь в социальных сетях:FacebookX
Напишите комментарий