p — n Переход .
p-n-Переход — это простейшая полупроводниковая структура, которая используется в большинстве полупроводниковых приборов. Для получения p-n-перехода полупроводниковый образец легируют (вводят в него примеси) таким образом, чтобы в одной его части преобладали донорные примеси, а в другой — акцепторные, в результате получают контакт полупроводника n-типа с полупроводником p-типа.
Советуем изучить Схемы простых стабилизаторов напряжения
Основным свойством p-n-перехода является его способность пропускать ток только в одном направлении, если напряжение приложено к образцу так, что проводимость осуществляется основными носителями тока, как это показано на рисунке выше: «-» со стороны полупроводника n-типа, «+» — со стороны p-типа (электроны из n-области переходят в p-область, и наоборот).
Если теперь поменять полярность приложенного напряжения U, то ток через p-n-переход практически не идет, т. к. переход через контакт осуществляется неосновными носителями, которых мало. Вольт-амперная характеристика р-n-перехода изображена на рисунке ниже.
Принцип работы солнечной батареи
В результате перетечки зарядов на границе p- и n- слоев, в n-слое образуется зона нескомпенсированного положительного заряда, а в p-слое – отрицательного заряда, т.е. известный всем из школьного курса физики p-n-переход. Разность потенциалов, возникающая на переходе контактная разность потенциалов (потенциальный барьер) препятствует прохождению электронов с p-слоя, но беспрепятственно пропускает неосновные носители в направлении противоположном, что позволяет получить фото-ЭДС при попадании на ФЭП солнечного света.
При облучении солнечным светом, поглощенные фотоны начинают генерировать неравновесные электронно-дырочные пары. Генерируемые же вблизи перехода электроны, из p-слоя переходят в n-область.
Аналогичным образом попадают в p-слой избыточные дырки и слоя n (рисунок а). Получается, что в p-слое накапливается положительный заряд, а в n- слое – отрицательный, вызывая напряжение во внешней цепи (рисунок б). У источника тока есть два полюса: положительный — p-слой и отрицательный — n-слой.
Это основной принцип работы солнечный элементов. Электроны, таким образом, будто бегают по кругу, т.е. выходят из p-слоя и возвращаются в n-слой, проходя нагрузку (аккумулятор).
Фотоэлектрический отток в однопереходном элементе обеспечивают лишь те электроны, которые обладают энергией выше, чем ширина некой запрещенной зоны. Те же, которые обладают меньшей энергией, в этом процессе не участвуют. Это ограничение снять позволяют структуры многослойные, состоящие из более чем один СЭ, у которых ширина запрещенной зоны различная. Их называют каскадными, многопереходными или тандемными. Фотоэлектрическое преобразование у них выше за счет того, что работают такие СЭ с более широким солнечным спектром. В них фотоэлементы располагаются по мере уменьшения ширины запрещенной зоны. Солнечные лучи вначале попадают на фотоэлемент с самой широкой зоной, при этом происходит поглощение фотонов с наибольшей энергией.
Затем, фотоны, пропущенные верхним слоем, попадают на следующий элемент и т.д. В области каскадных элементов основным направлением исследования является использование в качестве одного компонента или нескольких арсенида галлия. У таких элементов эффективность преобразования составляет 35%. Элементы соединяют в батарею, поскольку изготовить отдельный элемент большого размера (следовательно, и мощности) не позволяют технические возможности.
Солнечные элементы способны работать длительное время. Они себя зарекомендовали как стабильный и надежный источник энергии, пройдя испытания в космосе, где главной опасностью для них является метеорная пыль и радиация, которые приводят к эрозии кремниевых элементов. Но, поскольку, на Земле эти факторы не оказывают на них столь негативного действия, можно предположить, что срок службы элементов будет еще более продолжительным.
Солнечные батареи уже находятся на службе человека, являясь источником питания для различных устройств, начиная от мобильных телефонов и заканчивая электромобилями.
И это уже вторая попытка человека обуздать безграничную солнечную энергию, заставив работать ее себе во благо. Первой попыткой было создание солнечных коллекторов, электричество в которых вырабатывалось за счет нагрева сконцентрированными лучами солнца воды до температуры кипения.
Термальная солнечная электростанция в Испании (город Севилья)
Преимущество солнечных батарей в том, что они непосредственно производят электричество, теряя энергии намного меньше, чем солнечные многоступенчатые коллекторы, в которых процесс ее получения связан с концентраций лучей Солнца, нагревом воды, выделением пара, вращающего паровую турбину и только после этого выработке генератором электричества. Основные параметры солнечных батарей – в первую очередь, мощность
Затем важно, каким запасом энергии они обладают
Зависит этот параметр от емкости аккумуляторов и их числа. Третьим параметром является пиковая мощность потребления, означающая количество одновременно возможных подключений приборов. Еще одним важным параметров является номинальное напряжение, от которого зависит выбор дополнительного оборудования: инвертора, солнечной панели, контроллера, аккумулятора.
Где используется солнечная энергия?
О том, чтобы использовать солнечную энергию в своих целях, человек начал задумываться сравнительно недавно, хотя на практике пользовался ей на протяжении всей своей истории. Идея об аккумулировании и практическом применении возникла в начале XX века, но технологических возможностей для этого на то время не было. Прорыв совершился в конце века, когда появились фотоэлектрические панели, способные производить электроэнергию в ощутимых количествах. Вопрос важный и заслуживает подробного рассмотрения.
Использование энергии Солнца на земле является повсеместным, хоть и неосознанным явлением. Оно настолько обыденно и привычно, что люди редко задумываются о возможностях и перспективах солнечной энергетики. Однако, специалисты в разных отраслях научной и производственной деятельности давно разрабатывают технологии, позволяющие получать бесплатную и неиссякаемую энергию.
Если несколько десятилетий назад все ограничивалось нагревом воды в емкостях для летнего душа на дачном участке, то сегодня существуют различные способы использования солнечной энергии, наиболее развитые в следующих отраслях:
- космос и авиация;
- сельское хозяйство;
- обеспечение энергией спортивных и медицинских объектов;
- освещение участков частных домов или городских улиц;
- использование в быту;
- электрификация экспедиций, передвижных исследовательских или военных пунктов и т.д.
Этот список не будет полным, если не назвать СЭС, электростанции, где используется солнечная энергия. В последние годы их немало построено в США, Испании, ЮАР и других странах. Их мощность пока еще не способна превзойти уровень ГЭС, но технологии не стоят на месте и перспективы развития весьма многообещающие. Можно с уверенностью сказать, что через пару десятков лет на вопрос: «Где используется энергия Солнца на Земле?» можно будет услышать ответ: «Везде».
Особенности использования солнечной энергии
Фотоэнергия излучения солнца преобразуется в фотоэлектрических элементах. Это двухслойная структура, состоящая из 2 полупроводников различного типа. Полупроводник внизу – это p-тип, а верхний − n-тип. У первого недостаток электронов, а у второго − избыток.
Электроны полупроводника n-типа поглощают солнечное излучение, в результате чего электроны в нём сходят с орбиты. Силы импульса хватает для перехода в полупроводник p-типа. В результате возникает направленный поток электроном и генерируется электричество. При производстве фотоэлементов используется кремний.
На сегодняшний день выпускаются несколько видов фотоэлементов:
- Монокристаллические. Они выпускаются из монокристаллов кремния и имеют равномерную кристаллическую структуру. Среди остальных типов выделяются самым высоким КПД (около 20 процентов) и увеличенной стоимостью;
- Поликристаллические. Структура поликристаллическая, менее равномерная. Стоят дешевле и имеют КПД от 15 до 18 процентов;
- Тонкопленочные. Эти фотоэлементы изготовлены напылением на гибкую подложку аморфного кремния. Такие фотоэлементы дешевле всего, но и КПД у них оставляет желать лучшего. Они используются при производстве гибких солнечных панелей.
Крупнейшие производители
Лидерами глобального производства солнечных батарей являются компании Suntech, Yingli, Trina Solar, First Solar и Sharp Solar. Первые три представляют Китай, четвертая – США, а пятая, как нетрудно догадаться, является подразделением японской корпорации Sharp.
Гольфкар на солнечных батареях – бесшумное и экологически чистое средство передвижения
Американская компания First Solar не только производит солнечные батареи, но и принимает непосредственное участие в проектировании и строительстве солнечных электростанций. Мощнейшая в мире СЭС Агуа-Калиенте, которая находится в штате Аризона, США – дело рук инженеров First Solar.
Крупнейшую же украинскую СЭС «Перово» строила и снабжала солнечными панелями австрийская компания Activ Solar.
Китайская же компания Suntech прославилась тем, что готовила к летней Олимпиаде-2008 футбольный стадион под названием «Птичье гнездо» в Пекине. Вырабатываемая на протяжении дня с помощью солнечных батарей электроэнергия аккумулируется, а затем используется для освещения стадиона, полива травы на футбольном поле и работы телекоммуникационного оборудования.
Национальный стадион в Пекине густо усеян солнечными батареями производства Suntech
Технические характеристики: на что обратить внимание
Главным параметром фотоэлементной системы является мощность. Напряжение такой установки достигает максимума при ярком свете и зависит от количества соединенных последовательно элементов, которое почти во всех конструкциях равно 36. Мощность зависит от площади одного элемента и количества цепочек по 36 штук, соединенных параллельно.
Кроме самих батарей, важно подобрать контроллер зарядки аккумуляторов и инвертор, преобразующий заряд аккумуляторных батарей в напряжение сети, а также сами панели. В аккумуляторных батареях есть допустимый ток зарядки, который нельзя превышать, иначе система выйдет из строя
Зная напряжение аккумуляторов, легко определить мощность, необходимую для зарядки. Она должна быть больше мощности солнечной электростанции, иначе в солнечный день часть энергии окажется неиспользованной
В аккумуляторных батареях есть допустимый ток зарядки, который нельзя превышать, иначе система выйдет из строя. Зная напряжение аккумуляторов, легко определить мощность, необходимую для зарядки. Она должна быть больше мощности солнечной электростанции, иначе в солнечный день часть энергии окажется неиспользованной.
Контроллер обеспечивает заряд аккумуляторов и также должен иметь мощность, позволяющую полностью использовать энергию солнца.
К инвертору подключается оборудование, получающее энергию от ФЭС, поэтому его мощность должна соответствовать суммарной мощности электроприборов.
Кроме мощности и напряжения, важно выбрать фирму-производителя. Такое оборудование приобретается на срок несколько десятков лет, поэтому экономить на качестве нельзя
Производители, давно работающие на рынке, это понимают и дорожат своей репутацией. Можно почитать отзывы о них в интернете и выбрать с самыми положительными.
9. Особенности солнечных батарей с квантовыми точками
Последний перспективный вид батарей ближайшего будущего построен на свойствах физических квантовых точек – микроскопических включений полупроводников в тот или иной материал. Геометрически такие «точки» имеют размер в несколько нанометров и распределяются в материале так, чтобы охватить поглощение излучения всего солнечного спектра – ИК, видимого света и УФ.
Огромным преимуществом подобных панелей является возможность работать даже ночью, генерируя около 40% максимальной дневной мощности.
Физико-технические характеристики, сертификация и маркировка
Независимо от того, из чего сделаны солнечные батареи, каждая из них обладает рядом следующих важных характеристик:
- механические – геометрические параметры, общая масса, тип рамы, защитного стекла, количество ячеек, вид и ширина коннекторов;
- электрические или вольтамперные – мощность, напряжение холостого хода, сила тока при максимальной нагрузке, эффективность панели в целом и отдельных ячеек в частности;
- температурные – изменение КПД при повышении температуры на определенную единицу величины (обычно – 1 градус);
- качественные – срок службы, скорость деградации ячеек, присутствие в рейтинговых списках Bloomberg;
- функциональные – необходимость и удобство ухода, простота монтажа/демонтажа.
Промышленные солнечные панели, из каких бы материалов они не были сделаны, обязательно должны быть сертифицированы. Минимальными требованиями являются сертификаты качества ISO, СE, TUV (международные) и/или Таможенного союза (при продаже в его пределах).
Обязательной является и международные правила маркировки. Например, аббревиатура CHN-350M-72 содержит следующие сведения:
- CHN – идентификатор компании-изготовителя (в данном случае – китайской СhinaLand);
- 350 – мощность панели в ваттах;
- M – обозначение монокристаллического кремния;
- 72 – число фотоэлектрических ячеек в модуле.
Из чего можно сделать солнечные батареи своими руками дома
Для этого необходимо следующее:
Предварительно начерченная схема и проведенные расчеты.
Определенное количество солнечных ячеек заводского изготовления – купить их дешевле всего в сети, например, на сайте Aliexpress или в других сетевых магазинах
Обращайте внимание на то, чтобы все элементы имели одинаковые электрические характеристики. Самодельный каркас из бруса и фанеры – правила его сборки можно посмотреть на многочисленных видео в сети
Оргстекло или плексиглас для поверхностного защитного покрытия.
Краска и термостойкий клей для обработки деревянных поверхностей.
Контактные полосы и провода для соединения ячеек. Схемы различные способов соединения также можно изучить в интернете.
Паяльник и припой. Паяльные работы следует проводить очень внимательно, чтобы не испортить будущее изделие.
Силиконовый клей и саморезы для закрепления сборной батареи в каркасе.
Небольшая батарея потребует около 30-50 долларов вложений, в то время как заводской вариант аналогичной мощности обойдется всего на 10-20% дороже.
Разумеется, подобная самодельная конструкция не прослужит 25 лет, не сможет похвастаться значительным КПД и не будет обладать мощностью полноценной солнечной электростанцией для частного дома. Однако стоимость ее будет минимальной настолько, насколько это возможно.
Новые разработки
С каждым днем технологии стремительно развиваются, и производство солнечных моделей не стоит на месте. Предлагаем ознакомиться с последними новинками на рынке солнечных систем.
Солнечная черепица
Кровельное покрытие вырабатывает достаточно энергии, которую можно использовать в бытовых условиях. При использовании такого материала-оборудования можно питать отдельно выделенную электросеть или сбрасывать электроэнергию в общую сеть.
В любом случае общие затраты на электроэнергию снижаются.
Лидером по производству солнечной черепицы является компания из России — «Инноватикс». Вот уже более десяти лет она продает высококачественные отделочные материалы со встроенными фотоэлементами.
Интересно, что такую черепицу тяжело отличить от обычного кровельного материала даже при близком расстоянии.
Преимущества солнечной черепицы:
- Полупроводниковый материал, который используется при соединении фотоэлементов, сократили в 4 раза.
- Инновационная система фокусировки солнечного света позволяет получать в 5 раз больше энергии.
- Средний срок эксплуатации солнечной черепицы составляет 20 лет.
- Относительно небольшой вес черепицы не имеет негативного давления на кровлю.
- Прочность солнечной черепицы позволяет ее использовать при любых погодных условиях. Черепица спокойно выдерживает град и другие осадки.
- Простота креплений позволяет надежно устанавливать черепицу в самые короткие сроки.
Солнечное окно
Подобные панели по полной используют в высотках европейских городов. Это позволяет существенно экономить электроэнергию.
Технология солнечных окон представляет собой использование фотоэлементов в виде кремниевых полос, встроенных между стеклами. Помимо того, что окна будут вырабатывать дополнительную электроэнергию, в дополнение окно будет защищать комнату от перегрева, задерживая солнечный свет. Внешне солнечные окна похожи на привычные жалюзи.
Другой производитель солнечных окон «Solaris Plus» предлагает использовать специальные стекла, обработанные специальным кремниевым напылением. Полосы будут преобразовывать солнечные лучи в электроэнергию, которая будет питать АКБ через полупрозрачные проводники.
Эта статья об особенностях установки солнечных панелей.
Статью о современном уличном освещении читайте здесь.
Гибридные фотоэлементы
Фотоэлемент фиксируется с пироэлектрической пленкой и соединяется с термоэлектрическим оборудованием, способным преобразовывать тепло в электрический ток.
Тестирование новой гибридной технологии показало, что новая термическая пленка способна вырабатывать в 10 раз больше электроэнергии, чем стандартная солнечная панель.
Портативная солнечная батарея – специально для туристов
У каждого в наше время есть электронные гаджеты. Не суть, что у кого-то их меньше, а кого-то больше. Все их необходимо заряжать, а для этого нужны зарядные устройства. Но, особенно остро этот вопрос касается тех, кто попадает в места, где отсутствует электропитание. Единственным выходов являются солнечные батареи. Но, цены на них остаются высокими, а выбор — небольшим. Оптимальным вариантом, как принято считать, является продукция компании Goal Zero (хотя есть и российская продукция, и китайская – как всегда вызывающая сомнении).
Но, оказалось, что не все то плохо, что сделано в Китае или Корее. Особенно порадовала солнечная батарея компания YOLK из Чикаго, которая начала производство компактной солнечной батареи Solar Paper – самой тонкой и легкой. Ее вес всего 120 граммов. Но есть и другие преимущества – модульная конструкция, позволяющая наращивать мощность. Солнечная батарея похожа на пластиковую коробку, по размерам напоминающую Ipad, только тоньше в два раза. На ее лицевой стороне размещена солнечная панель. Есть на корпусе выход для ноутбука и порты USB и для подключения других солнечных панелей, а также фонарик. Внутри этой чудо коробки – аккумуляторы и плата управления. Зарядить девайс можно от розетки, причем, одновременно это могут быть телефон и два ноутбука. Конечно, заряжается устройство и от солнца. Как только на него попадает свет, загорается индикатор. В походных условиях солнечная панель просто незаменима: с успехом заряжает все нужные устройства – телефоны быстрее, ноутбуки.
Портативные солнечные батареи отличаются компактными размерами: они выпускаются даже в виде брелков, прикрепить которые можно к чему угодно. Разрабатывались они для того, чтобы можно было их взять на рыбалку, в поход и пр. Обязательно у них имеется фонарик, чтобы ночью можно было осветить дорогу, палатку и т.д., крепления, позволяющие легко их разместить на рюкзаках, байдарках, палатках
Очень важно, чтобы в таком устройстве был встроенный аккумулятор, позволяющий заряжать девайсы и в ночное время
Применение солнечных батарей
Кроме космонавтики и обеспечения частных домов электроэнергией, панели или батареи солнечные применяют в следующих сферах:
- Автомобилестроение. Экологичный транспорт приобретает популярность, ведь выхлопы бензина и газов загрязняют атмосферу, а цены на топливо постоянно растут. Машины на солнечной энергии способны развивать скорость до 140 км/ч.
- Эксплуатация водного транспорта (барж, катеров, яхт). Такой транспорт можно встретить в Турции. Лодки развивают небольшую скорость (до 10 км/ч), и это позволяет туристом осмотреть достопримечательности и роскошные пейзажи этой страны.
- Энергообеспечение зданий. В развитых странах Европы многие муниципальные здания и сооружения полностью обеспечивают свои нужды с помощью энергии, которую выделяют солнечные панели.
- Самолетостроение. Благодаря наличию батарей, самолет в полете может длительное время не расходовать топливо.
Как выбрать солнечные батареи для частного дома?
При выборе подходящих батарей учитывайте вместимость резервуара для воды. Слишком маленький бак не сможет летом получать все тепло от батарей. С другой стороны, в слишком большом баке вода никогда не будет достаточно горячей, и ее придется повторно нагревать.
Для семьи из четырех человек мы рекомендуем использовать резервуары емкостью около 300 л. Для нагрева такого количества воды достаточно 2 или 3 коллектора площадью около 2 кв. м.
Что касаемо выбора самих солнечных панелей, то их можно разделить на три категории по эффективности:
- Высокоэффективные (SunPower);
- Панели со средней эффективностью (REC, QCells, LONGi);
- Бюджетные (полностью поликристаллические модели).
Неэффективность панели вовсе не означает, что она не сможет вырабатывать энергию. Это значит ее более низкую мощность, то есть вам понадобится больше панелей, чтобы получить такой же эффект как у более мощных моделей.
Следует знать, что с увеличением производительности качество изготовления (выражаемое, например, в сроках гарантии на продукт) также увеличивается, но и цена панелей также растет. Так как:
- Средние и неэффективные фотоэлементы используются в наземных установках, потому что это более выгодно, площадь поверхности не является таким ограничением, и если что-то сломается, то легко заменить;
- На крышах используются очень эффективные и качественные, среднеэффективные панели, потому что обычно ограничивается поверхность, установка каждой панели стоит дороже, а если что-то сломается, заменить сложнее.
Однако все это лишь общие рекомендации, и все зависит от ситуации и затрат.
Мощность панели определяет, сколько электроэнергии будет производить данная панель (в условиях тестирования), однако ее производительность (или, лучше сказать, эффективность) определяет степень, в которой данная панель преобразует солнечное излучение в электричество.
Обратите внимание, мощность зависит от размера панели, а КПД — нет. Необходимо различать эти две концепции, чтобы можно было хорошо сравнить несколько панелей
Какие солнечные панели наиболее мощные, эффективные?
Панели Bruk-bet имеют самую высокую мощность, но самую низкую эффективность. Преимущество в мощности просто связано с большим количеством ячеек.
Очень хороши солнечные панели REC и Sharp, хотя первые больше по размерам и тяжелее. Размер панелей важен в том смысле, что пространство на крыше обычно ограничено.
Что касаемо надежности. Солнечные батареи — это устройства, настолько простые по своей конструкции, что они не сломаются без внешнего вмешательства. Исключение составляют изделия, которые перестанут работать из-за производственных дефектов. Однако это, как правило, самые дешевые панели китайского производства.
Тем не менее, товар может быть поврежден при транспортировке
С этой точки зрения важно кто продавец панелей, как выглядит гарантийное и послегарантийное обслуживание. Каждый производитель и каждый поставщик должен определять строгие условия гарантии, и они обычно схожи
Поэтому при покупке солнечных батарей следует обязательно обращать внимание на гарантию
Виды солнечных батарей
Все солнечные панели кажутся на первый взгляд одинаковыми – покрытые стеклом темные элементы с металлическими полосками, проводящими ток, помещенными в алюминиевую раму.
Но, солнечные батареи классифицируют по мощности вырабатываемого ею электричества, зависит которая от конструкции и площади панели (они могут быть миниатюрными пластинками с мощностью до десяти ватт и широкими «листами» на двести и более ватт).
Кроме этого, различаются они по типу образующих их фотоэлементов: фотохимические, аморфные, органические, а также созданные на основе кремниевых полупроводников, у которых коэффициент фотоэлектрического преобразования в несколько раз больший. Следовательно, больше и мощность (особенно во время солнечной погоды). Конкурентом последних может быть солнечная батарея на основе арсенида галлия. То есть, на рынке сегодня встретить можно пять типов солнечных батарей.
Они отличаются материалами, используемыми для их изготовления:
1. Панели из поликристаллических фотоэлектрических элементов, с характерным синим цветом солнечной панели, кристаллической структурой и КПД, равным 12-14%.
Поликристаллическая панель
2. Панели из монокристаллических элементов – более дорогие, но и более эффективные (КПД – до 16%).
Монокристаллическая панель
3. Панели солнечные из аморфного кремния, у которых КПД самый низкий – 6-8%, но вырабатывают они наиболее дешевую энергию.
Панель из аморфного кремния
4. Панели из теллурида кадмия, создаваемые по пленочным технологиям (КПД – 11%).
Панель, в основе которой лежит теллурид кадмия
5. Наконец, солнечные панели на основе полупроводника CIGS, состоящего из селена, индия, меди, галлия. Технологии их получения тоже пленочные, но КПД доходит до пятнадцати процентов.
Панель солнечная на основе CIGS
Кроме этого, панели солнечные могут быть гибкими и портативными.
Параметры и характеристики солнечных батарей
Основным показателем работоспособности батареи является ее мощность. Максимальное напряжение создается при наличии яркого света и зависит от количества элементов, соединенных последовательно. Важным фактором считается площадь каждого из них.
Нормальное функционирование панелей во многом зависит от дополнительных компонентов системы. Среди них следует отметить контроллер зарядки аккумуляторной батареи, а также инвертор, который нужен для преобразования постоянного тока в переменный.
Каждый аккумулятор обладает допустимым током зарядки, который не должен быть превышен. В противном случае это приведет к выходу из строя всей системы. Мощность, необходимая для зарядки аккумулятора, выбирается в зависимости от его напряжения. Уровень заряда как раз и обеспечивается контроллером, в результате, поступающая солнечная энергия используется максимально полно.
Необходимость использования контроллера связана с недостатками прямого подключения аккумулятора к батарее. В этом случае ток зарядки может быть либо слишком большим, либо слишком маленьким. В первом случае АКБ быстро выйдет из строя, а во втором – аккумулятор не будет полностью заряжен.
Мощность инвертора должна совпадать с аналогичным показателем у подключаемого оборудования. В этом случае в расчет принимается суммарная мощность используемых электроприборов.
Все дело в кремнии
Солнечные батареи состоят из ячеек меньшего размера – фотоэлементов, которые сделаны из кремния.
Солнечная панель состоит из нескольких фотоэлементов.
Важно. Кремний – наиболее распространенный полупроводник на Земле (около 30% всей земной коры)
Кремний располагается между двумя токопроводящими слоями
Кремний располагается между двумя токопроводящими слоями.
“Сэндвич” из кремния и токопроводящих слоев
Каждый атом кремния соединен с соседними четырьмя сильными связями, которые удерживают электроны на месте, поэтому так ток течь не может.
Структура атомов кремния
Для того, чтобы получить ток используют два различных слоя кремния:
- Кремний N-типа имеет избыток электронов
- Кремний Р-типа – дополнительные места для электронов (дырки)
Кремний Р и N типа
Там, где соединяются два типа кремния, электроны могут перемещаться через Р-N переход, оставляя положительный заряд на одной стороне и отрицательный на другой.
Чтобы это было легче представить, лучше думать о свете, как о потоке частиц (фотонов), которые ударяются о нашу ячейку настолько сильно, что выбивает электрон из его связи, оставляя дырку. Отрицательно заряженный электрон и место положительно заряженной дырки теперь могут свободно перемещаться, но т.к. мы имеем электрическое поле на Р-N переходе, они движутся только в одном направлении. Электрон – в сторону N-проводника, дырка стремится на Р – сторону пластины.
После “освобождения” электрон стремится к проводнику
Все электроны собираются металлическими проводниками вверху ячейки и уходят во внешнюю сеть, питая токоприемники, аккумуляторы для солнечных батарей или электрический стул для хомяка . После проведенной работы электроны возвращаются к обратной стороне пластины и занимают места в тех самых «дырках».
Работа фотоэлемента
Стандартная пластина, 150х150 мм номинально вырабатывает только 0,5 вольта, но если объединить их в одну большую панель, то можно получить бо́льшую мощность и вольтаж. Для зарядки мобильника нужно объединить 12 таких пластин. Для питания дома нужно затратить гораздо больше пластин и панелей.
Благодаря тому, что в фотоэлементах единственной подвижной частью являются электроны, солнечные панели не нуждаются в обслуживании и могут служить 20-25 лет не изнашиваясь и не ломаясь.
Способы подключения к системе отопления
Поскольку устройства на солнечной энергии не могут обеспечить стабильное и круглосуточное снабжение энергией, необходима система устойчивая к этим недостаткам.
Для средней полосы России солнечные устройства не могут гарантировать стабильный приток энергии, поэтому используются как дополнительная система. Интегрирование в существующую систему отопления и горячего водоснабжения отличается для солнечного коллектора и солнечной батареи.
Схема с водяным коллектором
В зависимости от целей использования теплового коллектора применяются разные системы подключения. Вариантов может быть несколько:
- Летний вариант для горячего водоснабжения
- Зимний вариант для отопления и горячего водоснабжения
Летний вариант наиболее простой и может обходится даже без циркуляционного насоса, используя естественную циркуляцию воды.
Вода нагревается в солнечном коллекторе и за счет теплового расширения поступает в бак-аккумулятор или бойлер. При этом происходит естественная циркуляция: на место горячей воды из бака засасывается холодная.
Зимой при отрицательных температурах прямой нагрев воды не возможен. По закрытому контуру циркулирует специальный антифриз, обеспечивая перенос тепла от коллектора к теплообменнику в баке
Как любая система основанная на естественной циркуляции работает не очень эффективно, требуя соблюдения необходимых уклонов. Кроме того, аккумулирующий бак должен быть выше чем солнечный коллектор. Чтобы вода оставалась как можно дольше горячей бак необходимо тщательно утеплить.
Если Вы хотите действительно добиться максимально эффективной работы солнечного коллектора, схема подключения усложниться.
Чтобы ночью коллектор не превратился в радиатор охлаждения необходимо прекращать циркуляцию воды принудительно
По системе солнечного коллектора циркулирует незамерзающий теплоноситель. Принудительную циркуляцию обеспечивает насос под управлением контроллера.
Контроллер управляет работой циркуляционного насоса основываясь на показаниях как минимум двух температурных датчиков. Первый датчик измеряет температуру в накопительном баке, второй – на трубе подачи горячего теплоносителя солнечного коллектора.
Как только температура в баке превысит температуру теплоносителя, в коллекторе контроллер отключает циркуляционный насос, прекращая циркуляцию теплоносителя по системе. В свою очередь при понижении температуры в накопительном баке ниже заданной включается отопительный котел.
Новым словом и эффективной альтернативой солнечным коллекторам с теплоносителем стали системы с вакуумными трубками, с принципом действия и устройства которых мы предлагаем ознакомиться.
Схема с солнечной батареей
Было бы заманчиво применить схожую схему подключения солнечной батареи к электросети, как это реализовано в случае солнечного коллектора, накапливая поступившую за день энергию. К сожалению для системы электроснабжения частного дома создать блок аккумуляторов достаточной емкости очень дорого. Поэтому схема подключения выглядит следующим образом.
При снижении мощности электрического тока от солнечной батареи блок АВР (автоматическое включение резерва) обеспечивает подключение потребителей к общей элетросети
С солнечных панелей заряд поступает на контроллер заряда, который выполняет несколько функций: обеспечивает постоянную подзарядку аккумуляторов и стабилизирует напряжение. Далее электрический ток поступает на инвертор, где происходит преобразование постоянного тока 12В или 24В в переменный однофазный ток 220В.
Увы, наши электросети не приспособлены для получения энергии, могут работать только в одном направлении от источника к потребителю. По этой причине вы не сможете продавать добытую электроэнергию или хотя бы заставить счетчик крутиться в обратную сторону.
Использование солнечных батарей выгодно тем, что они предоставляют более универсальный вид энергии, но при этом не могут сравнится по эффективности с солнечными коллекторами. Однако последние не обладают возможностью накапливать энергию в отличие от солнечных фотоэлектрических батарей.
Недостатки солнечных батарей
К сожалению, и этот практически неисчерпаемый источник энергии имеет определенные ограничения и недостатки:
- Высокая стоимость оборудования – автономная солнечная электростанция даже небольшой мощности доступна далеко не каждому. Оборудование частного дома такими аккумуляторами стоит недешево, но помогает снизить расходы на оплату коммунальных услуг (электроэнергии).
- Обустройство собственного жилища солнечными батареями потребует финансовых затрат.
- Периодичность генерации — солнечная электростанция не способна обеспечить полноценную бесперебойную электрификацию частного дома.
- Хранения энергии – в солнечной электростанции аккумуляторная батарея является самым дорогим элементом (даже батареи небольшого объема и панели на гелевой основе).
- Низкий уровень загрязнения окружающей среды – солнечная энергия считается экологически чистой, однако производственный процесс батарей сопровождается выбросами трифторида азота, оксидов серы. Все это создает «парниковый эффект».
- Использование в производстве редкоземельных элементов – тонкопленочные солнечные панели имеют в своем составе теллурид кадмия (CdTe).
- Плотность мощности – это количество энергии, которое можно получить с 1 кв. метра энергоносителя. В среднем этот показатель составляет 150-170 Вт/м2. Это гораздо больше по сравнению с другими альтернативными источниками энергии. Однако несравнимо, ниже чем у традиционных (это касается атомной энергетики).