Самые эффективные солнечные батареи: КПД, мощность и показатели напряжения

Недостатки солнечной электроэнергетики

  • Необходимость использования больших площадей;
  • Солнечная электростанция не работает ночью и недостаточно эффективно работает в вечерних сумерках, в то время как пик электропотребления приходится именно на вечерние часы;
  • Несмотря на экологическую чистоту получаемой энергии, сами фотоэлементы содержат ядовитые вещества, например, свинец, кадмий, галлий, мышьяк и т. д.

Cолнечные электростанции подвергаются критике из-за высоких издержек, а также низкой стабильности комплексных галогенидов свинца и токсичности этих соединений. В настоящее время ведутся активные разработки бессвинцовых полупроводников для солнечных батарей, например на основе висмута и сурьмы.

Из-за своей низкой эффективности, которая в лучшем случае достигает 20 процентов, солнечные батареи сильно нагреваются. Остальные 80 процентов энергии солнечного света нагревают солнечные батареи до средней температуры около 55 °C. С увеличением температуры фотогальванического элемента на 1°, его эффективность падает на 0,5 %. Эта зависимость нелинейна и повышение температуры элемента на 10° приводит к снижению эффективности почти в два раза. Активные элементы систем охлаждения (вентиляторы или насосы) перекачивающие хладагент, потребляют значительное количество энергии, требуют периодического обслуживания и снижают надёжность всей системы. Пассивные системы охлаждения обладают очень низкой производительностью и не могут справиться с задачей охлаждения солнечных батарей.

Как устроена солнечная батарея

Все современные солнечные батареи работают благодаря открытию, сделанным физиком Александром Беккерелем в 1839 году — самого принципа работы полупроводников.

Если нагревать кремниевые фотоэлементы на верхней пластине, то атомы кремниевого полупроводника высвобождаются. Их стремятся захватить атомы нижней пластины. В полном соответствии с законами физики, электроны нижней пластины должны вернуться в первоначальное состояние. Этим электронам открывается один путь — по проводам. Сохранённая энергия передается аккумуляторам и возвращается вновь в верхнюю кремниевую пластину.

Расчёт мощности солнечных батарей

Чтобы рассчитать необходимую мощность солнечных батарей нужно знать сколько энергии вы потребляете. Например если ваше потребление энергии составляет 100кВт*ч в месяц (показания можно посмотреть по счётчику электроэнергии), то соответственно вам нужно чтобы солнечные панели вырабатывали такое количество энергии. Сами солнечные батареи вырабатывают солнечную энергию только в светлое время суток. И выдают свою паспортную мощность только при наличие чистого неба и падении солнечных лучей под прямым углом. При падении солнца под углами мощность и выработка электроэнергии заметно падает, и чем острее угол падения солнечных лучей тем падение мощности больше. В пасмурную погоду мощность солнечных батарей падает в 15-20 раз, даже при лёгких облачках и дымке мощность солнечных батарей падает в 2-3 раза, и это всё надо учитывать.

При расчёте лучше брать рабочее время, при котором солнечные батареи работают почти на всю мощность, равным 7 часов, это с 9 утра до 4 часов вечера. Панели конечно летом будут работать от рассвета до заката, но утром и вечером выработка будет совсем небольшая, по объёму всего 20-30% от общей дневной выработки, а 70% энергии будет вырабатываться в интервале с 9 до 16 часов.

Таким образом массив панелей мощностью 1кВт (1000ватт) за летний солнечный день выдаст за период с 9-ти до 16-ти часов 7 кВт*ч электроэнергии, и 210кВт*ч в месяц. Плюс ещё 3кВт (30%) за утро и вечер, но пускай это будет запасом так-как возможна переменная облачность. И панели у нас установлены стационарно, и угол падения солнечных лучей изменяется, от этого естественно панели не будут выдавать свою мощность на 100%. Я думаю понятно что если массив панелей будет на 2кВт, то выработка энергии будет 420кВт*ч в месяц. А если будет одна панелька на 100 ватт, то в день она будет давать всего 700 ватт*ч энергии, а в месяц 21кВт.

Неплохо иметь 210кВт*ч в месяц с массива мощностью всего 1кВт, но здесь не всё так просто

Во-первых

не бывает такого что все 30 дней в месяце солнечные, поэтому надо посмотреть архив погоды по региону и узнать сколько примерно пасмурных дней по месяцам. В итоге наверно 5-6 дней точно будут пасмурные, когда солнечные панели и половины электроэнергии не будут вырабатывать. Значит можно смело вычеркнуть 4 дня, и получится уже не 210кВт*ч, а 186кВт*ч

Так-же

нужно понимать что весной и осенью световой день короче и облачных дней значительно больше, поэтому если вы хотите пользоваться солнечной энергией с марта по октябрь, то нужно увеличить массив солнечных батарей на 30-50% в зависимости от конкретного региона.

Но это ещё не всё

, также есть серьёзные потери в аккумуляторах, и в преобразователей (инверторе), которые тоже надо учитывать, об этом далее.

Про зиму

я пока говорить не буду так-как это время совсем плачевное по выработке электроэнергии, и тут когда неделями нет солнца, уже никакой массив солнечных батарей не поможет, и нужно будет или питаться от сети в такие периоды, или ставить бензогенератор. Хорошо помогает также установка ветрогенератора, зимой он становится основным источником выработки электроэнергии, но если конечно в вашем регионе ветренные зимы, и ветрогенератор достаточной мощности.

От чего зависит КПД

На высокий процент эффективной выработки электроэнергии батареями влияет множество факторов. Основными из них являются:

  • Угол падения солнечного света на поверхность панелей.
  • Температурный коэффициент.
  • Погодные условия.
  • Наличие тени, грязи, снега.
  • Затемнение элементов.

Максимальная эффективность солнечных панелей достигается при попадании солнечного света на поверхность модулей под углом 90 градусов, то есть перпендикулярно. При этом, даже если батарея располагается с учетом всех требований угла наклона, поверхность фотоэлементов должна быть чистой и не заслоняться деревьями или другими постройками.

Сегодня можно приобрести солнечную батарею, которая уже оснащена функцией слежения и контроля расположения солнца. То есть панель сама подстраивается под угол падения солнечных лучей. Но подобные устройства достаточно дорого стоят и применяются на промышленных объектах.

При установке солнечных модулей следуйте рекомендациям специалистов. Во-первых, выбирайте южную сторону для размещения конструкций, чтобы избежать попадания тени на них, а во-вторых, соблюдайте угол наклона согласно времени года и региона проживания. Ведь чем больше солнечного света попадает на поверхность, тем выше КПД, а соответственно, и выработка электроэнергии. Учитывайте, что в зимнее время показатель эффективности может подать в половину, а то и больше. И не забывайте очищать модули от снега и грязи, так как это становится препятствием для попадания света.

Еще одним важным препятствием, снижающим общую эффективность выработки батареями электрического тока, выступает температурный коэффициент. В результате попадания солнечных лучей на поверхность модулей они нагреваются, температура может доходить до 80 градусов. Критические температурные значения напрямую отражаются на уровне КПД. Показатель снижается. Необходимо проводить мероприятия, направленные на уменьшение потери эффективности. Например, это можно сделать за счет свободного пространства между батареями, из-за чего воздушные массы смогут охлаждать модули, а также путем периодического протирания их.

Устройство и принцип работы

Солнечные коллекторы и батареи на фотоэлектрических элементах – это разные по функционалу и принципу действия системы. Разберем их подробнее.

Солнечные коллекторы

Принцип работы таких систем основан на нагревании темных предметов под воздействием солнечного излучения. Если просто представить ведро, наполненное водой в ясный жаркий день, через какое-то время температура воды значительно вырастет. Если ведро будет выкрашено черной краской, то нагревание будет происходить значительно быстрее. Если же ведро плотно накрыть сверху листом стекла, то время нагрева значительно уменьшится, так как будет наблюдаться парниковый эффект.

Типы солнечных коллекторов:

  • открытые;
  • трубчатые;
  • плоские.

Рассмотрим их подробнее.

Открытые солнечные коллекторы

Тут действует принцип черного ведра без крышки, из примера выше. Простейшая система, которая представляет систему каналов, выкрашенных в черный цвет. Под действием излучения канал нагревается, передавая тепло воде. Защиты от атмосферных воздействий нет, и в зависимости от ветра и окружающей температуры эффективность системы может быть разной, но в любом случае она не высока.

Плоские коллекторы

Вариант ведра, которое закрыто стеклом, из примера выше. Принцип такой же, как и у открытого коллектора, но при этом сам канал закрыт прозрачным материалом. По дну канала проходит трубка, которая получает тепло и передает его теплоносителю, например, воде. Также малоэффективны, но могут применяться для летнего душа или бассейна.

Трубчатые коллекторы

В трубчатых системах идея поглощения и сохранения тепла, была доведена практически до совершенства. Устройство представляет из себя систему трубок, каждая из которых состоит из стеклянной колбы, внутри которой находится трубка со светопоглощающим покрытием. Между трубками вакуум. Таким образом, внутренняя трубка нагревается от солнечного излучения, но из-за вакуума потери тепла минимальны, потому что она находится в своеобразном термосе, из-за откачанного воздуха. Тепло передается через теплоноситель в общую систему.

Схема трубчатого коллектора

Трубки соединяются параллельно и собираются в модули разного размера. Модулей может быть несколько, в зависимости от мощности отопительной системы.

Преимущества трубчатых коллекторов
эффективность при более низких температурах;
модульность и ремонтопригодность;
не обязательно попадание солнечных лучей под прямым углом к плоскости коллектора.

Недостатки
высокая стоимость;
низкая эффективность зимой;
низкая эффективность зимой;
имеют большие габариты;

Трубчатые коллекторы чаще всего имеют заводское исполнение. Вышедшие из строя трубки можно заменить. Также требуется эффективно утеплять трубопроводы, по которым передается теплоноситель, чтобы снизить потери энергии.

Солнечные батареи

В основе устройства солнечной батареи лежит свойство полупроводниковых фотоэлементов вырабатывать электрический ток под воздействием солнечных лучей. Элементы собираются в единый блок, солнечную батарею или панель. Количеством таких блоков можно легко регулировать мощность системы.

Сами фотоэлементы состоят из кремния и делятся на 3 вида:

  • Монокристаллические – состоит из тонких пластин, выращенного искусственно кристалла кремния. Коэффициент полезного действия примерно 18%. Самая дорогая разновидность солнечной батареи;
  • Поликристаллические – пластины получают из кремниевого расплава, который охлаждается постепенно. КПД в районе 12%. Это менее эффективная, но и менее трудоемкая технология производства;
  • Аморфные – пластины состоят из испаренного кремния, который осел на подложке. КПД 5 – 7%. Панели выполненные по этой технологии отличаются хорошим светопоглощением в пасмурную погоду.

Ток солнечных батарей на фотоэлементах зависит от погоды, облачности, времени суток, степени загрязнения поверхности батареи. Помимо того они вырабатывают постоянный ток. Поэтому в комплекте к батарее в системе есть:

  • инвертор;
  • контроллер;
  • аккумулятор

Инвертор преобразует постоянный ток в требуемое напряжение сети. Аккумулятор накапливает электроэнергию за световой день для стабильной работы в ночное время. Контроллер управляет зарядом аккумулятора, предохраняет его от перезаряда, регулирует потоки энергии от батареи между аккумулятором и потребителями.

Что нужно для солнечной электростанции (из чего состоит полный комплект солнечной батареи)

  1. Солнечные панели – основной компонент, который генерирует энергию Солнца в электрическую.
  2. Аккумулятор – является компонентом, накапливающим и распределяющим электричество, например, когда элементы отключены или ночью.
  3. Контроллер – обеспечивает режимы зарядки: силу тока и уровень напряжения
  4. Инвертор – трансформирует постоянный ток в переменный, с необходимым напряжением и частотой.

Для эффективного функционирования нужно точно рассчитать характеристики всех компонентов, из которых будет состоять система.

Первое, что нужно рассчитать — суммарное потребление. Самое простое — посмотреть расход по счетчику, либо сложить суммарную мощность необходимых электроприборов. Плюс, стоит делать 20% надбавку для менее ясных месяцев, в средней полосе — это зимние месяцы.

Затем при выборе элементов стоит ориентироваться на мощность. Из этого складывается — сколько нужно батарей, чтобы покрыть суточный расход, если происходит полный переход или покрытие необходимой мощности в неполном внедрении автономной энергии.

Исследования и новейшие разработки в области повышения КПД

Стоит отдельно остановиться на новейших достижениях в области повышения КПД и рассмотреть самые эффективные солнечные батареи. Многие из них еще находятся в стадии теоретических разработок и не прошли полных испытаний в реальных условиях эксплуатации.

Экспериментальные модели представлены следующими производителями:

  • Фирма Sharp подготовила образцы продукции с КПД порядка 44,4%. Ее изделия до сих пор занимают лидирующее место во всем мире. Новейшие разработки отличаются сложным устройством, состоят из трех слоев, а на разработку и испытания было затрачено несколько лет. Более простые модели все равно работают с эффективностью 37,9%, что в сравнении с обычными системами является серьезным технологическим прорывом.
  • Солнечные панели, разработанные в испанском исследовательском институте – IES. В ходе испытаний они показали эффективность в пределах 32,6%. Такой высокий КПД удалось получить за счет использования двухслойных модулей. Стоимость изделий ниже, чем у других производителей, но на данном этапе использовать их в обычных жилых домах экономически невыгодно и нецелесообразно.

Солнечные батареи для дома

Производство солнечных батарей

Установка солнечных батарей

Как сделать солнечную батарею своими руками

Солнечные батареи: альтернативная энергия

Виды солнечных батарей

Как рассчитать мощность солнечных батарей для дома. Жми!

Невысокий КПД солнечных батарей – один из основных недостатков современных гелиосистем. На сегодняшний день один квадратный метр фотоэлемента способен вырабатывать около 15-20 % от мощности падающего на него излучения.

Такая выработка требует установку батарей больших размеров для полноценного электроснабжения. Более того, чтобы достичь необходимого выходного напряжения, панели соединяются между собой последовательно или параллельно. Их площадь при этом может достигать от нескольких квадратных метров.

КПД солнечных панелей зависит от целого ряда причин:

  • материал фотоэлемента;
  • плотность солнечного потока;
  • время года;
  • температура;
  • и др.

Давайте подробнее поговорим о каждом факторе.

Материал фотоэлемента

Виды солнечных батарейСолнечные преобразователи делятся на три вида, в зависимости от метода образования атома кремния:

  • поликристаллические;
  • монокристаллические;
  • панели из аморфного кремния.

Поликристаллические панели изготовлены из чистого кремния и отличаются сравнительно высоким КПД – 14-17%.

Монокристаллические панели менее эффективны в преобразовании солнечной энергии. Их коэффициент полезного действия около 10-12 %. Но невысокие энергозатраты на изготовление таких преобразователей делает их более доступными.

Тонкопленочные батареи также изготавливают с нанесением частиц меди, индия, галлия и селена. Это немного увеличивает их производительность.

Работа в любую погоду

График зависимости мощности от погодных условийДанный показатель зависит от географического расположения панели: чем ближе к экватору, тем выше плотность солнечного излучения.

Зимой производительность фотоэлементов может снизиться от 2 до 8 раз. Это объясняется, прежде всего, скоплением на них снега, сокращением продолжительности и количества солнечных дней.

Важно помнить: в зимнее время следить за наклоном панелей т. к

солнце находится ниже обычного.

Условия эффективной работы

Чтобы батарея работала эффективно, нужно учесть несколько нюансов:

  • угол наклона батареи к солнцу;
  • температуру;
  • отсутствие тени.

Угол между рабочей поверхностью преобразователя и солнечными лучами должен быть близок к прямому. В таком случае эффективность фотоэлементов при прочих равных условиях будет максимальна. Чтобы увеличить КПД дополнительно к ним устанавливают систему слежения за солнцем, которая меняет наклон относительно положения светила. Но подобное встречается нечасто из-за дороговизны оборудования.

В процессе работы многие батареи нагреваются, что плохо сказывается на качестве преобразования энергии солнца в электрическую. Во избежание потерь необходимо оставлять пространство между устройством и опорной поверхностью. Это позволит потоку воздуха свободно проходить и охлаждать преобразователи.

Важно знать: необходимо протирать панели 2-3 раза в год, очищая их от пыли и тем самым увеличивая проходимость лучей солнца. КПД фотоэлементов непосредственно зависит от количества попадающего на них солнечного света

И очень важно предусмотреть правильный монтаж преобразователей с полным отсутствием теней, падающих на рабочую поверхность. В противном случае может пострадать эффективность всей системы в целом. Как правило, батареи устанавливаются с южной стороны

КПД фотоэлементов непосредственно зависит от количества попадающего на них солнечного света

И очень важно предусмотреть правильный монтаж преобразователей с полным отсутствием теней, падающих на рабочую поверхность. В противном случае может пострадать эффективность всей системы в целом

Как правило, батареи устанавливаются с южной стороны.

Есть батареи с 40% кпд, о них смотрите в следующем видео:

https://youtube.com/watch?v=pKscGXyZOi8

Рассчитываем мощность солнечных батарей

Выяснить необходимую мощность солнечных батарей нужно на основании количества потребляемой вами энергии  (показания посмотрите по счетчику).

Нужно понимать, что солнечные батареи вырабатывают электричество исключительно в светлое время суток. Кроме того, лишь чистое небо и падение лучей под прямым углом гарантирует выдачу паспортной мощности. В противном случае выработка электроэнергии падает. Так, при пасмурной погоде мощность батарей подает в 15-20 раз.

Расчет мощности солнечных панелей

Производя расчет солнечных панелей, берите рабочее время, при котором панели функционируют на всю – с 9 до 16 часов. Летом батареи работают от рассвета до заката, но вечером или утром выработка составляет 20-30% от всей дневной.

Следовательно, массив батарей мощностью 1 кВт при солнечной погоде летом за 7 часов выдает 7 кВт/ч энергии, т.е. 210 кВт в месяц. Те 3 кВт, которые вырабатываются утром и вечером, оставьте про запас на случай пасмурной погоды. Кроме того, панели устанавливают стационарно, из чего следует, наклон солнечных лучей тоже будет меняться, что не позволит 100% выработку.

Интересное:

Однако даже на 210 кВт/ч за месяц не стоит полностью полагаться. Существует ряд факторов, которые могут снизить показатели:

  • Географическое положение – не может в нашем регионе в месяце быть 30 солнечных дней. Нужно просмотреть архивы погоды и узнать примерное количество пасмурных дней. Не менее 5-6 дней точно окажутся несолнечными, солнечные панели не дадут и половины обещанной электроэнергии. Вычеркиваем 4 дня, получаем уже не 210 кВТ/ч, а 186.
  • Смена сезонов – осенью и весной световой день короче, а пасмурных дней больше. Если собираетесь пользоваться энергией солнца с марта по октябрь, увеличьте массив модулей на 30-50% в зависимости от места жительства.
  • Дополнительно оборудование – происходят серьезные потери в инверторе, а также аккумуляторах.

Как выбрать инвертор?

Инвертор необходим для преобразования постоянного тока в переменный. Ключевой характеристикой является мощность, потому что инвертор напрямую подключается к панелям

Важно отметить, что лучше брать инвертор с запасом мощности 15-20% для полноценной работы в случае перегрузок

Характеристики, которые стоит учитывать при выборе:

Форма тока. В основном, устройства производят модифицированный синус, что подходит для всех бытовых приборов.
Максимальное КПД позволяет минимизировать потери электричества

Как правило, КПД всех производимых в настоящее время аппаратов около 95%.
Инвертор должен соответствовать требованиям АКБ.
Рекомендуем подбирать инвертор с максимальным набором индикаторов, так как важно контролировать все компоненты.

Сетевые инверторы

Этот тип подсоединяется к центральной сети и использует ее как источник. Такие аппараты не могут работать совместно с накопительными приборами.

Комбинированные инверторы

Наиболее оптимальны, особенно при не полном переходе на автономную энергию, так как такие устройства могут выполнять функции сетевых и автономных инверторов, а также позволяют выбирать ведущий источник электроэнергии.

КПД солнечных батарей

Наука и технологии не стоят на месте в сфере использования альтернативной энергетики, а использование солнечной энергии в быту и промышленности будет дальше развиваться и совершенствоваться, пытаясь вытеснить традиционные источники энергии. К сожалению, до глобального доминирования гелиоэнергетики пока далеко и виной тому низкий КПД солнечных батарей.

Факторы влияющие на эффективность солнечных батарей

На эффективность работы солнечных батарей влияют объективные и субъективные факторы, такие как:

  • материалы, используемые в изготовлении,
  • технологии,
  • место использования (широта),
  • угол падения солнечных лучей,
  • запыленность и повреждения.

Лидеры энергоэффективности солнечных батарей

Рассмотрим лидеров в изготовлении наиболее эффективных компонентов солнечных панелей и отсортируем по их эффективности:

  • 44,7% КПД от первого из неуниверситетских научно-исследовательских институтов Германии. Результат получен для концентраторов тройного перехода слоев сложного состава полупроводника (Ga 0,35 В 0,65 P / Ga 0,83 В 0,17 As / Ge). Такие солнечные элементы сложны, не используются в жилых или коммерческих целях, потому что они очень дороги. Они используются в космической технике таких производителей, как NASA, где мало пространства.
  • 37,9% эффективности получено из однослойного модуля полупроводникового перехода (InGaP / GaAs / InGaAs). При этом результат получен исключительно для 90° нормали к Солнцу. Эти солнечные элементы также сложны и трудоемки в изготовлении, но их промышленное производство видится более перспективным.
  • 32,6% добились испанские исследователи с института (IES) и университета (UPM). Они использовали мульти-модули из концентраторов с двумя переходами полупроводников. Опять же, эти элементы еще далеки от широкого использования для коммерческих или жилых объектов.

Баланс эффективности солнечных батарей 

Есть около десятка крупнейших производителей, выпускающих солнечные батареи со сравнительно неплохим КПД и умеренной стоимостью. Ведущие компании производящие солнечные батареи при самых современных технологиях могут промышленно изготавливать солнечные элементы с эффективностью близкой к 25%. При этом хорошо налажено массовое производство модулей с КПД солнечных батарей, как правило, не превышающих показатель 14-17%. Главной причиной этой разницы в эффективности является то, что методы исследования, используемые в лабораториях, не подходят для коммерческого производства фотоэлектрической продукции и, следовательно, более доступные технологии имеют сравнительно низкие затраты в производстве, что и приводит к понижению показателя КПД в использовании.

Для этого покажем на графике зависимость стоимости готового модуля к стоимости произведенной электроэнергии для технологических серий солнечных батарей с характерными для них показателями КПД.

На сравнительном графике хорошо видна экономическая эффективность солнечных батарей с начальными лабораторными показателями КПД, изготовленных по разным технологиям, в отношении оптимальной стоимости произведенной электроэнергии в 6 центов за кВт-час (3,4 руб/кВт-ч).

Таким образом, самые доступные и недорогие в изготовлении солнечные элементы из аморфного кремния в виде тонкой гнущейся пленки окупают себя при сравнительно небольших размерах, но экономически не эффективны при больших потребностях в электроэнергии. Они широко применяются для переносных зарядок телефонов, светильников и т. д.

Батареи из поликристаллического кремния уже становятся эффективны при применении для жилых домов и небольших теплиц.

Элементы опытных солнечных электростанции изготовлены на основе монокристаллов кремния высокой степени очистки (99,999). Обладают оптимальными показателями эффективности и имеют экономически обоснованный срок окупаемости.

Новейшие научные разработки фотоэлементов, имеющие, самый высокий КПД применяются исключительно в тех отраслях науки и промышленности, где стоимость не является основным критерием выбора.

Применение солнечных батарей все больше входит в различные сферы нашей жизни, но к сожалению, из-за несовершенства технологии производства (и как следствие достаточного низкого КПД) при значительной стоимости не имеет широко применения.

От чего зависит эффективность солнечных батарей

На КПД фотоэлектрических преобразователей влияет масса факторов. Так, как было отмечено выше, количество вырабатываемой энергии зависит от структуры панели преобразователя, материала их изготовления.

Кроме того, эффективность солнечных преобразователей зависит от:

  • Силы солнечного излучения. Так, при снижении солнечной активности, мощность гелиоустановок снижается. Чтобы батареи обеспечивали потребителя энергией и в ночное время, их снабжают специальными аккумуляторами.
  • Температуры воздуха. Так, солнечные батареи с охлаждающими устройствами являются более продуктивными: нагрев панелей негативно сказывается на их способности преобразовывать энергию в ток. Так, в морозную ясную погоду КПД гелиобатарей выше, нежели в солнечную и жаркую.
  • Угла наклона устройства и падения солнечных лучей. Для обеспечения максимальной эффективности, панель солнечной батареи должна быть направлена строго под солнечное излучение. Наиболее эффективными считаются модели, уровень наклона которых можно менять относительно расположения Солнца.
  • Погодных условий. На практике отмечено, что в районах с пасмурной, дождливой погодой эффективность солнечных преобразователей значительно ниже, нежели в солнечных регионах.

Кроме того, на эффективность солнечных преобразователей влияет и уровень их чистоты. Для того, чтобы устройство могло работать продуктивно, его пластины должны потреблять как можно больше солнечного излучения. Сделать это можно лишь в том случае, если приборы чистые.

Мыть экраны рекомендуется 1-4 раза в год в зависимости от степени загрязнений. При этом, для очистки можно использовать шланг с насадкой. Технический осмотр преобразовательных элементов следует проводить раз в 3-4 месяца.

Разновидности

Эффективность и производительность солнечных панелей зависят от конструкции отдельных элементов. Существует несколько разновидностей:

  1. Монокристаллические. Изготавливаются из одного монокристалла, выращенного из кремния в определенных условиях. Представляют собой тонкий поперечный срез. КПД составляет 17–22 %. Это самые дорогие и качественные элементы. Внешне выглядят как черные прямоугольники со скошенными краями.
  2. Поликристаллические. Разработаны для того, чтобы снизить себестоимость и конечную цену элементов. Изготавливаются из расплава кремния, состоящего из множества кристаллических образований. КПД составляет 12–18 %. Характеристики этих элементов несколько снижены, но и цена более доступная для массового покупателя. Внешне они представляют собой синие прямоугольники.
  3. Аморфные элементы. Эти элементы имеют более слабые характеристики, чем моно- или поликристаллические конструкции. Однако, они намного дешевле, что позволяет получить общую мощность аморфных солнечных панелей, не уступающую более производительным конструкциям. Разница только в количестве элементов. Аморфные солнечные батареи изготавливаются из разных материалов, могут быть жесткими или гибкими. Особенностью таких панелей является способность работать в пасмурную погоду, когда освещенность низкая.

Самыми производительными панелями считаются арсенид-галлиевые, но их обычно не учитывают в общей классификации. Они слишком дорогие, поэтому для частных пользователей не доступны.

Кроме этого, существуют одно- и двухсторонние солнечные батареи, способные поглощать свет одной или обеими сторонами. Однако, пока применения двусторонним панелям не найдено, так как для использования одновременно обеих сторон требуется отражающая система. Она сложна в изготовлении и настройке, дешевле использовать большее количество обычных панелей.

Подведем итоги

Технологии не стоят на месте, и оборудование для электростанций становится меньше по площади и мощнее.

Мы советуем выбирать только качественное оборудование, чтобы батареи работали долго и эффективно.

Наши специалисты всегда помогут подобрать и рассчитать подходящий комплект, основываясь на характеристиках оборудования и желании заказчика.

При правильном подборе оборудования и грамотной установке и подключении, электростанция будет обеспечивать вас электричеством от 15 до 30 лет без замены оборудования! А при профессиональном и своевременном профилактическом обслуживании срок службы установок достигает 50 лет!

Статью подготовили эксперты компании solarworks.ru

При цитировании ссылка на первоисточник обязательна.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий