Определение потерь электроэнергии в домашней системе
Величину этих потерь учитывает Кпот. Эти потери могут быть в:
- Проводах. Величина составляет 1%.
- Инверторе. Составляют от 3 до 7%.
- Шунтирующих диодах (0,5%).
- Самой батарее при очень малом солнечном излучении (1-3%).
Также потери электроэнергии могут возникать из-за сильного нагрева модуля (составляют 4-8%) и из-за наличия грязи на солнечных панелях или их потемнений (1-3%).
Автономная электрическая система для дома считается оптимальной, если общие потери не превышают 15%. Тогда срок окупаемости сокращается, а также аккумуляторы накапливают больше тока. Кпот составляет 0,85. Однако плохое качество оборудования или неграмотный выбор комплектующих может привести к 30-% потерям. Кпот уже составит 0,7.
Развитие отечественной космической фотоэнергетики
Об энергоснабжении космических аппаратов конструкторы задумывались еще на стадии проектирования самых первых ракет-носителей. Ведь в космосе батареи не заменить, значит, срок активной службы космического аппарата обусловлен только емкостью бортовых батарей. Первый и второй искусственные спутники земли были оснащены только бортовыми батареями, которые истощились через несколько недель работы. Начиная с третьего спутника, все последующие космические аппараты были оборудованы солнечными батареями.
Главным разработчиком и изготовителем космических солнечных электростанций было научно-производственное предприятие «Квант». Солнечные панели «Кванта» установлены практически на всех отечественных космических аппаратах. Вначале это были кремниевые солнечные батареи. Их мощность была ограничена как заданными размерами, так и весом. Но затем учеными «Кванта» были разработаны и изготовлены первые в мире солнечные батареи на основе совершенно нового полупроводника – арсенида галлия (GaAs).
Кроме того, были запущены в производство абсолютно новые гелиевые панели, которые не имели аналогов в мире. Этой новинкой стали высокоэффективные гелиевые панели на подложке, имеющей сетчатую или струнную структуру.
Гелиевые панели с сетчатой и струнной подложкой
Специально для установки на космических аппаратах с низкими орбитами были спроектированы и изготовлены кремниевые гелиевые панели с двусторонней чувствительностью. Например, для российского сегмента международной космической станции (космического аппарата «Звезда») были изготовлены панели на кремниевой основе с двусторонней чувствительностью, причем площадь одной панели составляла 72 м².
Солнечная батарея космического аппарата «Звезда»
Были также разработаны на базе аморфного кремния и запущены в производство гибкие солнечные батареи, имеющие прекрасные удельные весовые характеристики: при весе всего 400 г/м² эти батареи вырабатывали электроэнергию с показателем 220 Вт/кг.
Гибкая гелиевая батарея на базе аморфного кремния
Чтобы повысить эффективность солнечных элементов, в большом объеме проводились наземные исследования и испытания, которые выявляли отрицательные воздействия Большого Космоса на гелиевые панели. Это позволило перейти к изготовлению солнечных батарей для космических аппаратов различных типов со сроком активной работы до 15 лет.
Космические аппараты миссии «Венера»
В ноябре 1965 года с интервалом в четыре дня к нашей ближайшей соседке – Венере – стартовали два космических аппарата – «Венера-2» и «Венера-3». Это были два абсолютно одинаковых космических зонда, основная задача которых состояла в посадке на Венеру. На обоих космических аппаратах были установлены солнечные батареи на основе арсенида галлия, которые хорошо зарекомендовали себя на предыдущих околоземных аппаратах. За время полета вся аппаратура обоих зондов работала бесперебойно. Со станцией «Венера-2» было проведено 26 сеансов связи, со станцией «Венера-3» ─ 63. Таким образом, была подтверждена высочайшая надежность солнечных батарей этого типа.
Из-за сбоев аппаратуры управления была потеряна связь с «Венерой-2», но станция «Венера-3» продолжала свой путь. В конце декабря 1965 по команде с Земли была произведена коррекция траектории, и 1 марта 1966 года станция достигла Венеры.
Станция «Венера-3»
Данные, полученные в результате полета этих двух станций, были учтены при подготовке новой миссии, и в июне 1967 года к Венере была запущена новая автоматическая станция «Венера-4». Так же, как и две ее предшественницы, она была оборудована арсенид-галлиевыми солнечными батареями общей площадью 2.4 м². Эти батареи поддерживали работу практически всей аппаратуры.
Станция «Венера-4». Внизу – спускаемый аппарат
18 октября 1967 года после отделения спускаемого аппарата и входа его в атмосферу Венеры станция продолжала свою работу на орбите, выполняя в том числе и роль ретранслятора сигналов с радиопередатчика спускаемого аппарата на Землю.
Расчет производительности
Применение солнечной энергии и экономическую рациональность таких концепций обусловливает эффективность всех видов систем солнечных батарей. Прежде всего учитываются затраты, обращённые на преобразование энергии солнца в электрическую.
Насколько окупаемы и эффективны такие системы, определяют и такие факторы как:
- Тип гелиопанелей и сопутствующего оборудования;
- КПД фотоэлементов и их стоимость;
- Климатические условия. В разных регионах — разная солнечная активность. Она же влияет и на срок окупаемости.
Как подобрать нужную производительность
Перед покупкой панелей необходимо знать, какую необходимую эффективность сможет выдавать солнечная батарея.
Если ваш домашний уровень потребления составляет, к примеру, 100 кВт/месяц (по электросчетчику), то целесообразно чтобы гелиоэлементы вырабатывали столько же.
С этим определились. Пойдем дальше.
Понятно, что гелиостанция работает только в дневное время суток. Мало того — паспортная мощность будет достигнута при наличии ясного неба. Кроме этого, пика мощности можно добиться при условии падения лучей солнца на поверхность под прямым углом.
При изменении положения солнца изменяется и угол панели. Соответственно, при больших углах будет наблюдаться заметное снижение мощности. Это только при условии ясного дня. В пасмурную погоду можно гарантировать падение мощности в 15–20 раз. Даже небольшое облачко или дымка вызывает падение мощности в 2–3 раза
Это тоже надо принимать во внимание
Теперь — как рассчитать время работы панелей?
Рабочий период, при котором батареи смогут эффективно работать практически на всю мощность, составляет примерно 7 часов. С 9–00 до 4–00 вечера. В летнее время световой день больше, но и выработка электричества в утреннее и вечернее время совсем мала — в пределах 20–30 %. Остальная часть, это 70 %, будет вырабатываться, опять-же, в дневное время, с 9 до 16 часов.
Итак, получается, что если панели имеют паспортную мощность 1 кВт, то в самый летний, самый солнечный день выработают 7 кВт/час электроэнергии. При том условии, что проработают с 9 до 16 часов дня. То есть в месяц это составит 210 кВт/час электроэнергии!
Это комплект панелей. А одна панелька мощностью всего-навсего в 100 ватт? За день она даст 700 ватт/час. В месяц 21 кВт.
Немного о батареях-чемпионах по КПД
Рекордсменом по коэффициенту полезного действия в гелиосистемах на данный момент считаются немецкие батареи. Они созданы в Институте гелиоэнергетики им. Фраунгофера. В их основу положены фотоэлементы, состоящие из нескольких слоев. Компания «Сойтек» активно внедряет их в сферу широкого потребления, начиная уже с 2005 года.
Сами элементы — не более 4 мм толщиной, а солнечный свет фокусируется на их поверхности с помощью специальных линз. Благодаря им осуществляется преобразование световых частиц в электроэнергию, а КПД при этом составляет целых 47%.
Второе место заслуженно занимают панели, созданные путем применения фотоэлементов из трех слоев фирмы «Шарп». Это тоже солнечные батареи с высоким КПД, хотя и немного меньше — 44%.
Три слоя представлены тремя веществами: фосфидом индия (галлия), арсенидом галлия и арсенидом индия (галлия). Между ними располагается диэлектрическая прослойка, применяемая для того, чтобы получить туннельный эффект. Что касается фокусировки света, ее получают путем применения известной линзы Френеля. Концентрация света достигается до уровня в 302 раза, а далее попадает в трехслойный полупроводниковый преобразователь.
Безусловно, подобный рекорд КПД едва ли может быть доступен широкому кругу потребителей. Кстати, Илон Маск, известный американский миллиардер, является владельцем компании «Солар Сити». Не так давно, в 2015 году, компания Маска разработала именно «потребительский» вариант солнечных батарей с коэффициентом полезного действия, превышающим 22%.
Разработки и многочисленные лабораторные опыты проводятся и по сей день. Можно быть уверенными в том, что такие технологии имеют большое будущее — в качестве экологичного альтернативного источника энергии.
Как вам статья?
Мне нравится1Не нравится
Плюсы
- За счет того, что в панелях нет подвижных узлов и элементов, повышается долговечность. Производители гарантируют срок службы в 25 лет.
- Если соблюдать все регламентные работы и правила эксплуатации работа таких систем увеличивается до 50 лет. Обслуживание довольно несложное — своевременно очищать фотоэлементы от пыли, снега и других естественных загрязнений.
- Именно долговечность системы — определяющий фактор для покупки и монтажа панелей. После того как все затраты себя окупят, вырабатываемое электричество получится бесплатным.
Самое главное препятствие для широкого применения таких систем — их высокая стоимость. При низком КПД бытовых солнечных панелей, есть серьезные сомнения в экономической необходимости именно в таком способе добычи электроэнергии.
Но опять же, надо разумно оценивать возможности данных систем и, исходя из этого, рассчитывать ожидаемую отдачу. Полностью заменить традиционную электроэнергию не выйдет, но получить экономию, используя и солнечные системы, вполне реально.
Кроме того, сложно не заметить такие выгоды как:
- Получение электричества в самых удаленных от цивилизации районах;
- Автономность;
- Бесшумность.
Срок службы и окупаемость солнечных панелей
В гелиосистемах нет никаких подвижных механических частей, что делает их долговечными и надёжными. Срок эксплуатации подобных батарей 25 лет и дольше. Если их правильно эксплуатировать и обслуживать, то они могут прослужить и 50 лет. Кроме этого, в них не бывает каких-то серьёзных поломок и от владельца требуется лишь периодически чистить фотоэлементы от грязи, снега и т. п. Это требуется для увеличения КПД и эффективности гелиосистемы. Длительный срок службы зачастую становится определяющим при решении покупать или нет солнечные батареи. Ведь после прохождения срока окупаемости, электроэнергия от них будет бесплатной.
Установка солнечных батарей на крыше
На срок окупаемости оказывают влияние следующие факторы:
- Тип фотоэлементов и оборудования. На окупаемость оказывает влияние как величина КПД, так и первоначальная стоимость фотоэлементов;
- Регион. Чем выше интенсивность солнечного света в вашей местности, тем меньше срок окупаемости;
- Цена оборудования и монтажа;
- Цена электроэнергии у вас в регионе.
- Южная Европа ─ до 2 лет;
- Средняя Европа – до 3,5 лет;
- Россия ─ в большинстве регионов до 5 лет.
Эффективность солнечных коллекторов для сбора тепла и батарей для получения электрической энергии постоянно увеличивается. Правда не так быстро, как хотелось бы. Специалисты отрасли занимаются повышением КПД и снижением себестоимости фотоэлементов. В итоге всё это должно привести к уменьшению срока окупаемости и широкому распространению солнечных батарей.
Где теряется производительность
В сами элементы заложены очень большие возможности. Теоретически, из расчета, КПД солнечной панели может составлять 80–87 %!
Но из практики мы знаем, что их эффективность крайне мала. Коэффициент полезного действия фактически находится в пределах 15–20 %. Именно такую часть электричества способны вырабатывать современные солнечные панели из всего солнечного потока, попадающего на принимающие фотоэлементы.
- Несовершенство технологии производства.
- Недостаточно чистые компоненты для изготовления.
- Погрешности при сборке.
Это всего лишь малая часть тех составляющих причин, куда уходит энергоэффективность.
Также необходимо учитывать и погодные условия. Какая бы современная солнечная панель не была — она не будет эффективно работать, если солнце закрыто облаками или расположено над горизонтом. Эту причину сложно регулировать. Значит единственное средство — повышать эффективность самих панелей.
К этим перечисленным трудностям следует добавить и то, что процесс очистки и получения кристаллов сам по себе – достаточно дорогая процедура. Без этого необходимого комплекса высокотехнологичных работ, трудно добиться ожидаемого эффекта.
Конечно, есть солнечные панели с высоким КПД. Но их конечная стоимость настолько высока, что недоступна для массового покупателя.
История
В 1842 году Александр Эдмон Беккерель открыл эффект преобразования света в электричество. Чарльз Фриттс (англ. Charles Fritts) начал использовать селен для превращения света в электричество. Первые прототипы солнечных батарей были созданы итальянским фотохимиком Джакомо Луиджи Чамичаном.
25 марта 1948 года, специалисты компании Bell Laboratories заявили о создании первых солнечных батарей на основе кремния для получения электрического тока. Это открытие было произведено тремя сотрудниками компании — Кельвином Соулзером Фуллером (Calvin Souther Fuller), Дэрилом Чапин (Daryl Chapin) и Геральдом Пирсоном (Gerald Pearson). Уже через 4 года, 17 марта 1958 года, в США был запущен спутник с использованием солнечных батарей — «Авангард-1». 15 мая 1958 года в СССР также был запущен спутник с использованием солнечных батарей — «Спутник-3».
Это интересно: В Германии построили самую высокую ветряную электростанцию в мире
Что такое КПД
Итак, КПД батареи — это количество реально вырабатываемого ею потенциала, обозначаемое в процентах. Для его вычисления необходимо мощность электрической энергии разделить на мощность энергии Солнца, попадающей на поверхность солнечных панелей.
Сейчас этот показатель находится в пределах от 12 до 25%. Хотя на практике, учитывая погодные и климатические условия, он не поднимается выше 15. Причиной тому являются материалы, из которых производят солнечные аккумуляторы. Кремний, который представляет собой основное «сырье» для их изготовления, не обладает способностью поглощения УФ-спектра и может работать только с инфракрасным излучением. К сожалению, из-за такого недостатка мы теряем энергию УФ-спектра и не применяем ее с пользой.
Влияние на КПД солнечных электростанций сторонних факторов
Эффективность панелей после сборки, связанная с их конструктивными особенностями, остается неизменной. Совсем иначе дело обстоит с постоянно меняющимися внешними факторами воздействия.
- Уровень освещения. Оказывает максимальное воздействие на все фотоэлектрические системы. При полном отсутствии света абсолютное большинство современной фотовольтаики не функционирует вообще. Исключение составляют экзотические варианты с дополнительным слоем люминофора длительного свечения.
- Направление на солнце и рассеянный свет. При больших углах наклона наибольшее падение реального КПД происходит у монокристаллических солнечных панелей. Минимальное воздействие ухудшение условий освещения оказывает на редкоземельные тонкопленочные батареи.
- Падение тени. Особенно неблагоприятно сказывается на кристаллических модулях, вплоть до вероятности выхода их из строя. Пленочные конструкции страдают от этого меньше.
- Осадки. Сами по себе дождь, снег или град практически не изменяют эффективность преобразования. Единственная опасность состоит в возможном механическом повреждении защитного слоя, что грозит потерей герметичности и возникновением эффекта PID.
- Температурные колебания. Наиболее опасны для модулей быстрые смены циклов замерзания/оттаивания. Низкие температуры изменения в КПД солнечных батарей не вызывают. Однако к высоким очень чувствительны Poli-Si, и особенно Mono-Si. С превышением показателя +25°C монокристаллы начинают терять эффективность примерно на 0,5% с каждым градусом. Нагрев поверхностного слоя до 60-70°C, что часто бывает летом в жарких регионах, приводит к потере 20% номинальной производительности.
Остается надеяться, что в следующих поколениях солнечных электростанций их КПД будет зависеть от внешних факторов минимально.
Использование
Портативная электроника
Для обеспечения электричеством и/или подзарядки аккумуляторов различной бытовой электроники — калькуляторов, плееров, фонариков и т. п.
Энергообеспечение зданий
Солнечная батарея на крыше дома
Солнечные батареи крупного размера, как и солнечные коллекторы, широко используются в тропических и субтропических регионах с большим количеством солнечных дней. Особенно популярны в странах Средиземноморья, где их помещают на крышах домов.
Новые дома Испании с марта 2007 года оборудованы солнечными водонагревателями, чтобы самостоятельно обеспечивать от 30 % до 70 % потребностей в горячей воде, в зависимости от места расположения дома и ожидаемого потребления воды. Нежилые здания (торговые центры, госпитали и т. д.) должны иметь фотоэлектрическое оборудование.
В настоящее время переход на солнечные батареи вызывает много критики среди людей. Это обусловлено повышением цен на электроэнергию, загромождением природного ландшафта. Противники перехода на солнечные батареи критикуют такой переход, так как владельцы домов и земельных участков, на которых установлены солнечные батареи и ветровые электростанции, получают субсидии от государства, а обычные квартиросъемщики — нет. В связи с этим Федеральное министерство экономики Германии разработало законопроект который позволит в ближайшем будущем ввести льготы для арендаторов, проживающих в домах, которые обеспечиваются энергией, поступающей от фотовольтаических установок или блочных тепловых электростанций. Наряду с выплатой субсидий владельцам домов, которые используют альтернативные источники энергии, планируется выплачивать дотации проживающим в этих домах квартиросъемщикам.
Использование в космосе
Солнечные батареи — один из основных способов получения электрической энергии на космических аппаратах: они работают долгое время без расхода каких-либо материалов, и в то же время являются экологически безопасными, в отличие от ядерных и радиоизотопных источников энергии.
Однако при полётах на большом удалении от Солнца (за орбитой Марса) их использование становится проблематичным, так как поток солнечной энергии обратно пропорционален квадрату расстояния от Солнца. При полётах же к Венере и Меркурию, напротив, мощность солнечных батарей значительно возрастает (в районе Венеры в 2 раза, в районе Меркурия в 6 раз).
Использование в медицине
Южнокорейские ученые разработали подкожную солнечную батарею. Миниатюрный источник энергии может быть вживлен под кожу человека с целью бесперебойного обеспечения работы приборов, имплантированных в тело, например, кардиостимулятора. Такая батарея в 15 раз тоньше волоса и может заряжаться, если даже на кожу наносится солнцезащитное средство.
Часто спрашивают
Солнечные батареи во время эксплуатации деградируют. На какой промежуток времени они рассчитаны?
Батареи класса качества А (GradeA), как правило, получают гарантию на 15-25 лет. За это время снижение показателей от номинальных не превышает 20%.
Как можно добиться стабильной отдачи от монокристаллических панелей в Средней полосе?
Инсоляция в этих регионах не способствует эффективной работе монокристаллических батарей. Несколько улучшить положение можно за счет поворотных устройств слежения за светилом, но их реализация существенно удорожает установку в целом.
Обязательно ли чистить/мыть панели?
Не обязательно, большинство производителей говорят, что для нормальной работы достаточно природных осадков, смывающих пыль. Однако несколько раз в сезон обдать водой из шланга будет не лишним. Конечно же, обязательно убирать снег зимой после снегопадов.
Возможно ли использовать в российских условиях солнечные батареи как единственный источник энергии, или следует дублировать его сетью?
При правильном расчете количества панелей и дополнительного оборудования (аккумуляторов, инвертора) солнечная электростанция вполне справится с электроснабжением дома без дублирующих источников.
На рынке сегодня множество предложений разных компаний. Чьи солнечные батареи покупать?
Большинство мелких производителей используют модули компаний, входящих в ТОП 10. Репутацию же производителя легко проверить на сайте Калифорнийской (https://gosolarcalifornia.org/equipment/pv_modules.php) или Европейской TUV (https://www.tuev-sued.de/industry_and_consumer_products/certificates) лабораторий.
Недостатки солнечной электроэнергетики
- Необходимость использования больших площадей;
- Солнечная электростанция не работает ночью и недостаточно эффективно работает в вечерних сумерках, в то время как пик электропотребления приходится именно на вечерние часы;
- Несмотря на экологическую чистоту получаемой энергии, сами фотоэлементы содержат ядовитые вещества, например, свинец, кадмий, галлий, мышьяк и т. д.
Cолнечные электростанции подвергаются критике из-за высоких издержек, а также низкой стабильности комплексных галогенидов свинца и токсичности этих соединений. В настоящее время ведутся активные разработки бессвинцовых полупроводников для солнечных батарей, например на основе висмута и сурьмы.
Из-за своей низкой эффективности, которая в лучшем случае достигает 20 процентов, солнечные батареи сильно нагреваются. Остальные 80 процентов энергии солнечного света нагревают солнечные батареи до средней температуры около 55 °C. С увеличением температуры фотогальванического элемента на 1°, его эффективность падает на 0,5 %. Эта зависимость нелинейна и повышение температуры элемента на 10° приводит к снижению эффективности почти в два раза. Активные элементы систем охлаждения (вентиляторы или насосы) перекачивающие хладагент, потребляют значительное количество энергии, требуют периодического обслуживания и снижают надёжность всей системы. Пассивные системы охлаждения обладают очень низкой производительностью и не могут справиться с задачей охлаждения солнечных батарей.
Почему мощность солнечной батареи 210 кВт лучше
Отличным вариантом станет солнечная батарея мощностью в 210 кВт. Но и здесь все не так просто.
Первое, что нужно учесть, это то, что солнце не будет светить весь месяц, и именно по этой причине необходимо свериться с архивом погодных условий в регионе, чтобы узнать приблизительное количество пасмурных дней. Как итог, вы увидите, что примерно 7 дней в общем количестве будет особо пасмурных и в этот период солнечные батареи не смогут давать нужное количество энергии.
Кроме этого нужно осознавать, что осеню и весной, день сокращается, а облачные дни увеличиваются, поэтому если вам нужна солнечная энергия, начиная с марта и заканчивая октябрем, то лучше увеличить массив батарей до 50%. Это зависит от региона проживания
Самым плачевным временем года для выработки солнечной энергии станет зима. Это, то время года, когда солнце может не появляться неделями, и в данной ситуации ни один массив не сможет помочь. В такой период лучше пользоваться бензогенераторами или ветрогенераторами. Кстати, последний, может стать основным поставщиком энергии в это время года. Конечно, если в вашей местности есть хорошие зимние ветра, и вы установили достаточно мощный генератор.
Использование
Портативная электроника
Для обеспечения электричеством и/или подзарядки аккумуляторов различной бытовой электроники — калькуляторов, плееров, фонариков и т. п.
Энергообеспечение зданий
Солнечная батарея на крыше дома
Солнечные батареи крупного размера, как и солнечные коллекторы, широко используются в тропических и субтропических регионах с большим количеством солнечных дней. Особенно популярны в странах Средиземноморья, где их помещают на крышах домов.
Новые дома Испании с марта 2007 года оборудованы солнечными водонагревателями, чтобы самостоятельно обеспечивать от 30 % до 70 % потребностей в горячей воде, в зависимости от места расположения дома и ожидаемого потребления воды. Нежилые здания (торговые центры, госпитали и т. д.) должны иметь фотоэлектрическое оборудование.
В настоящее время переход на солнечные батареи вызывает много критики среди людей. Это обусловлено повышением цен на электроэнергию, загромождением природного ландшафта. Противники перехода на солнечные батареи критикуют такой переход, так как владельцы домов и земельных участков, на которых установлены солнечные батареи и ветровые электростанции, получают субсидии от государства, а обычные квартиросъемщики — нет. В связи с этим Федеральное министерство экономики Германии разработало законопроект который позволит в ближайшем будущем ввести льготы для арендаторов, проживающих в домах, которые обеспечиваются энергией, поступающей от фотовольтаических установок или блочных тепловых электростанций. Наряду с выплатой субсидий владельцам домов, которые используют альтернативные источники энергии, планируется выплачивать дотации проживающим в этих домах квартиросъемщикам.
Использование в космосе
Солнечные батареи — один из основных способов получения электрической энергии на космических аппаратах: они работают долгое время без расхода каких-либо материалов, и в то же время являются экологически безопасными, в отличие от ядерных и радиоизотопных источников энергии.
Однако при полётах на большом удалении от Солнца (за орбитой Марса) их использование становится проблематичным, так как поток солнечной энергии обратно пропорционален квадрату расстояния от Солнца. При полётах же к Венере и Меркурию, напротив, мощность солнечных батарей значительно возрастает (в районе Венеры в 2 раза, в районе Меркурия в 6 раз).
Использование в медицине
Южнокорейские ученые разработали подкожную солнечную батарею. Миниатюрный источник энергии может быть вживлен под кожу человека с целью бесперебойного обеспечения работы приборов, имплантированных в тело, например, кардиостимулятора. Такая батарея в 15 раз тоньше волоса и может заряжаться, если даже на кожу наносится солнцезащитное средство.
Как сделать работу солнечной панели максимально эффективной
Производительность любой гелиосистемы зависит от:
- температурных показателей;
- угла падения лучей Солнца;
- состояния поверхности (она всегда должна быть чистой);
- погодных условий;
- наличия или отсутствия тени.
Оптимальный угол падения лучей Солнца на панель — 90°, то есть прямой. Уже существуют гелиосистемы, оснащенные уникальными устройствами. Они позволяют следить за положением светила в пространстве. Когда положение Солнца по отношению к Земле изменяется, меняется и угол наклона гелиосистемы.
Постоянный нагрев элементов тоже не лучшим образом сказывается на их производительности. Когда энергия преобразуется, возникают ее серьезные потери. Поэтому между гелиосистемой и поверхностью, на которую она монтируется, всегда нужно оставлять небольшое пространство. Воздушные потоки, проходящие в нем, будут служить природным способом охлаждения.
Чистота солнечных батарей — тоже немаловажный фактор влияющий на их КПД. Если они сильно загрязнены, они собирают меньше света, а значит, их эффективность снижается.
Также и правильная установка играет большую роль. Нельзя при монтировании системы допускать, чтобы на нее падала тень. Лучшая сторона, на которой их рекомендуется устанавливать — южная.
Переходя к погодным условиям, можно заодно ответить на популярный вопрос о том, работают ли солнечные батареи в пасмурную погоду. Безусловно, работа их продолжается, потому что электромагнитное излучение, исходящее от Солнца, попадает на Землю во все времена года. Конечно, производительность панелей (КПД) будет значительно меньше, особенно в регионах с обилием дождливых и пасмурных дней в году. Другими словами, электроэнергию они вырабатывать будут, но в гораздо меньшем количестве, чем в регионах с солнечным и жарким климатом.
Виды аккумуляторов и их характеристики
Стартерные аккумуляторы
Выбирать эту разновидность стоит только в том случае, если место, где будет установлен аккумулятор, будет иметь хорошую вентиляцию. Подобная разновидность аккумуляторов, предназначенных для работы в составе солнечной электрической станции, отличается довольно высоким показателем саморазряда. Их используют в тех случаях, когда солнечная батарея вынуждена функционировать в тяжелых условиях.
Аккумуляторы с намазными пластинами
Подобные устройства можно назвать наилучшим вариантом в таких случаях, когда осуществлять постоянное обслуживание системы невозможно. Помимо этого гелевые аккумуляторы незаменимы в случае установки в плохо вентилируемом помещении. Однако подобные накопители электрической энергии нельзя назвать бюджетным вариантом. К тому же продолжительность эксплуатации подобных аккумуляторов относительно невелика. Положительными качествами подобных элементов можно назвать малые потери электрической энергии, что значительно продлит работу станции в ночные часы и пасмурную погоду.
AGM-аккумуляторы
Строение AGM-батареи
Основой работы данных накопителей электрической энергии являются абсорбирующие стекломаты. Между стекломатами располагается электролит в связанном состоянии. Использовать по назначению аккумулятор можно в абсолютно любом положении. Стоимость подобных аккумуляторов относительно невелика, а уровень заряда достаточно высокий.
Срок продолжительности эксплуатации данного аккумулятора составляет около пяти лет. Помимо этого отличительными особенностями аккумулятора AGM-типа, являются: возможность перемещения в полностью заряженном состоянии, способность выдерживать до восьми сотен циклов полного заряда и разряда, относительно небольшие размеры, быстрая зарядка (около семи с половиной часов).
Данный аккумулятор работает в диапазоне температур от пятнадцати до двадцати пяти градусов. Однако подобные аккумуляторы плохо переносят неполный заряд.
Гелевые аккумуляторы
Электролит в данном аккумуляторе имеет консистенцию желе. Конструкция подобных аккумуляторов отличается высокой устойчивостью к заряду и разряду. Они не нуждаются в многочисленных мероприятиях по их обслуживанию. Стоимость подобного элемента относительно невысокая. Потери энергии также не существенны.
Заливные (OPzS) аккумуляторы
Электролит в данных аккумуляторах находится в жидком состоянии. Они не нуждаются в постоянном обслуживании. В большинстве случаев необходимо контролировать уровень электролита примерно раз в год. Подобные устройства, предназначенные для аккумулирования электрической энергии, разработаны для разрядки небольшими токами, а также могут выдерживать большое количество циклов полной зарядки и разрядки.
Однако стоимость подобных устройств довольно высокая, так что их целесообразно использовать в мощных электростанциях, занимающихся преобразованием солнечной энергии в электрическую.