Вентиляция воздуха в помещении с помощью рекуператора

Особенности и принцип работы

Схема рекуперации тепла в устройстве

Итак, что такое рекуперация тепла? –  Рекуперация это процесс теплообмена, при котором холодный воздух с улицы нагревается за счёт выходящего потока с квартиры. Благодаря такой схеме организации установка с рекуперацией тепла экономит тепло в доме. В квартире за короткий промежуток времени и с минимальными затратами электричества формируется комфортный микроклимат.

На видео ниже представлена система рекуперации воздуха.

Экономическая целесообразность рекуперативного теплообменника зависит и от других факторов:

  • цен на энергоносители;
  • стоимости установки агрегата;
  • затрат, связанных с обслуживанием устройства;
  • продолжительности эксплуатации такой системы.

Обратите внимание! Рекуператор воздуха для квартиры – важный, но не единственный элемент, необходимый для эффективной вентиляции в жилом пространстве. Вентиляция с рекуперацией тепла – комплексная система, функционирующая исключительно при условии профессиональной «связки».

Рекуператор для дома

С понижением температуры окружающей среды эффективность агрегата падает. Как бы то ни было, а рекуператор для дома в этот период жизненно необходимо, поскольку существенная температурная разница «нагружает» систему отопления. Если за окном 0°C, то в жилое пространство подается воздушный поток, прогретый до +16°C. Бытовой рекуператор для квартиры с этой задачей справляется без каких-либо проблем.

Эффективность агрегата легко рассчитать, воспользовавшись следующей формулой:

Формула для подсчёта эффективности

Современные рекуператоры воздуха отличаются не только КПД, нюансами использования, но и конструкционно. Рассмотрим самые популярные решения и их особенности.

Типы фильтров для вентиляции

Какие фильтры нужны для удержания всего вышеперечисленного? Выделяют три типа бытовых воздушных фильтров:

1. Фильтры класса G: G1, G2, G3 и G4. Они предназначены для крупных загрязнений. Большая часть средней и мелкодисперсной пыли пройдет мимо них. Поэтому приточный вентилятор с фильтром (единичным) такого класса подходит только для экологически чистых районов.

Чем больше цифра класса, тем выше эффективность удержания. Например, фильтр G1 задерживает в среднем 60% крупных частиц, а фильтр G4 – уже до 95%. Это справедливо для фильтров любого класса.

2. Фильтры класса F: F5, F6, F7, F8 и F9. Такие фильтры «ловят» более мелкие частицы: пыль (кроме мелкодисперсной), цветочную пыльцу, микроволокна, сажу и др.

3. Фильтры класса Н (E), они же фильтры HEPA (EPA): H10 (Е10), H11 (Е11), H12 (Е12), H13 и H14. Специализация таких фильтров – мельчайшие частицы. НЕРА фильтры справляются даже с РМ2.5, против которых бессильны фильтры классов ниже.

Существуют и более эффективные фильтры: фильтры класса U, которые используются для очистки воздуха в зонах, где нужна стерильная обстановка, например, на фармацевтическом производстве. Однако для бытовой приточной или вытяжной вентиляции с фильтрацией такая очистка избыточна.

Отдельно стоит выделить угольные фильтры и адсорбционно-каталитические фильтры (АК), содержащие специальную смесь сорбентов и катализаторов. Активные вещества в таких фильтрах «цепляют» молекулы газов и удерживают их в своих порах. Подобные фильтры – хорошая защита от запахов и вредных выбросов.

СПЕЦИАЛИЗАЦИЯ ФИЛЬТРОВ:
Крупные загрязненияФильтры G
Средняя и мелкая пыльФильтры F
Мельчайшие загрязнения, PM2.5Фильтры НЕРА
Пыльца и споры плесениФильтры F
Запахи и вредные газыФильтры АК

Самостоятельное изготовление рекуператора пластинчатого типа

Поскольку средняя стоимость пластинчатого теплообменника составляет 300 у. е., имеет смысл сделать этот несложный в изготовлении рекуператор воздуха своими руками.

Для того чтобы изготовить рекуператор самостоятельно, понадобятся:

  • листы оцинкованного металла (4 кв. м.);
  • техническая пробка толщиной 2 мм;
  • силиконовый герметик с нейтральной реакцией;
  • жестяная коробка для корпуса или листы МДФ, метала или фанеры для его изготовления;
  • клей;
  • утеплитель толщиной 4 см (минеральная вата или пенопласт);
  • уголки для стоек;
  • пластиковые фланцы;
  • электролобзик или болгарка.

Этапы работ:

  1. Разрезаем материал на небольшие квадраты с размером стороны от 200 до 300 мм. Пластины должны быть одинаковыми и идеально ровными, лучше будет разрезать сложенные пачкой листы болгаркой, нежели использовать ножницы по металлу. Таких пластин, служащих заготовками для кассет рекуператора, должно получиться около 70 шт.
  2. С целью создания зазора между листами используем техническую пробку. Суть в том, чтобы сделать такое сечение, при котором скорость потоков воздуха будет составлять 1 м/с. Наклеиваем нарезанную пробку по двум противоположным краям квадратных заготовок, не трогая последнюю.
  3. Дождавшись высыхания клея, создаем кассету теплообменника, склеивая листы таким образом, чтобы каждый последующий располагался под углом в 90 градусов к предыдущему. В кассете получаются чередующиеся каналы, перпендикулярные друг другу. Последним будет лист, на который мы не клеили пробку.
  4. После соединения всех пластин с помощью уголка стягиваем конструкцию каркасом.
  5. Все щели тщательно заделываем герметиком.
  6. На стенках кассеты располагаем крепления для фланцев, имеющих диаметр, соответствующий трубам воздуховодов. Желательно расположить кассету вертикально, тогда в самом низу будет собираться конденсат. В этом же месте готовится дренажный канал: отверстие с трубкой для отвода жидкости.
  7. Для того чтобы кассету можно было извлекать из корпуса, внутри него нужно установить направляющие из уголка.
  8. Корпус с кассетой располагают в коробе, изготовленном из толстой фанеры или жести. Важным моментом будет использование теплоизоляционных материалов (минеральная вата или пенопласт), которыми оклеиваются все стороны короба изнутри.

Для более надежной работы системы рекуперации в условиях отрицательных температур приточного воздуха, когда пластины теплообменника могут обледенеть, к системе добавляют байпас, через который в случае необходимости направляют поток приточного воздуха. В это время через теплообменник будет проходить только теплый вытяжной воздух, и под его воздействием заледеневшие пластины теплообменника будут оттаивать.

КПД самодельного рекуператора составит около 60–65 %, что позволит обеспечить поддерживать оптимальный микроклимат в помещении.

https://www.youtube.com/embed

Расчёт мощности системы

Проветриватель для больших помещений повышенной мощности

Габариты и мощность рекуператора влияют на производительность устройства. Чем больше площадь вентилируемого помещения, тем более мощный рекуператор потребуется. Поэтому прежде чем приобретать устройство следует провести расчёт мощности рекуператора.

Для этого используется формула: Q = 0,335 x L x (T1 – T2), где:

  • Q (Вт) – мощность устройства;
  • L (м3/ч) – объём воздуха, необходимый для нормальной жизнедеятельности человека. Согласно норме для одного человека требуется 60 м3/ч;
  • Т1 (оС) – температура воздуха после рекуперации;
  • Т2 (оС)– температура воздуха до рекуперации.

Например, рассчитаем мощность рекуператора для квартиры, где проживает 3 человека. Температура воздуха, транспортируемого в помещения, должна равняется не менее 20 оС, а с улицы поступает воздух температурой -10 оС. Q = 0,335 x 180 x 32 = 1929,6 Вт.

При проведении расчёта следует брать минимально возможную температуру (в среднем за 5 лет), которая наблюдалась в регионе, где планируется установка рекуператора. Если устройство не планируется использовать как основной источник обогрева помещения, то показатели температуры подбираются индивидуально.

Расчёт мощности системы

Проветриватель для больших помещений повышенной мощности

Габариты и мощность рекуператора влияют на производительность устройства . Чем больше площадь вентилируемого помещения, тем более мощный рекуператор потребуется . Поэтому прежде чем приобретать устройство следует провести расчёт мощности рекуператора .

Для этого используется формула: Q = 0,335 x L x (T1 – T2), где:

  • Q (Вт) – мощность устройства;
  • L (м 3 /ч) – объём воздуха, необходимый для нормальной жизнедеятельности человека. Согласно норме для одного человека требуется 60 м 3 /ч;
  • Т1 ( о С) – температура воздуха после рекуперации;
  • Т2 ( о С)– температура воздуха до рекуперации.

Например, рассчитаем мощность рекуператора для квартиры , где проживает 3 человека. Температура воздуха, транспортируемого в помещения, должна равняется не менее 20 о С, а с улицы поступает воздух температурой -10 о С. Q = 0,335 x 180 x 32 = 1929,6 Вт.

При проведении расчёта следует брать минимально возможную температуру (в среднем за 5 лет), которая наблюдалась в регионе, где планируется установка рекуператора . Если устройство не планируется использовать как основной источник обогрева помещения, то показатели температуры подбираются индивидуально.

Как узнать КПД системы рекуперации


Формула расчёта КПД рекуператора

При самостоятельном изготовлении рекуператора не всегда удаётся собрать устройство с максимальным показателем КПД. Тем более КПД рекуператора зависит от температуры и влажности воздуха снаружи помещения.

Для расчёта КПД рекуператора используется формула: H = (tр — tу) / (tд — tу), где:

  • tр – температура воздуха после рекуперации;
  • tу – температура воздуха до рекуперации;
  • tд – температура отработанного воздуха, выходящего из помещения.

Итоговое значение следует умножить на 100%. Например, рассчитаем КПД устройства для конкретных условия. Температура воздуха снаружи — 5 оС, после рекуперации — 17 оС, в помещении — 24 оС. КПД = (17 – 5) / (24 – 5) = 0,63 * 100% = 63%.

Инструменты и материалы

Примерный набор материалов и инструментов:

  • Металл 0,5-1 мм, текстолит или сотовый поликарбонат 1-5 мм в количестве 5, 10 или 15 м2 в зависимости от типа рекуператора;
  • полоски 2-3 мм из дерева, технической пробки или оргстекла, шириной 1-1,5 см;
  • Нержавеющая сталь, ДСП, фанера для корпуса в соответствии с чертежами;
  • Минеральная вата, полистирол для теплоизоляции;
  • 4 пластиковых фланца для вентиляционных каналов на основе канализационных труб;
  • Лобзики для дерева и металла, предпочтительно электрические;
  • силиконовый герметик;
  • Алюминиевая труба 2-5 мм, длина в соответствии с проектом;
  • универсальный клей;
  • самонарезающие винты;
  • Стальной угловой пруток 20×20 мм, длина в соответствии с проектом;
  • отвертка, пила по металлу;
  • Бумажные фильтры, автомобильные фильтры – столько, сколько необходимо;
  • строительный нож;
  • молоток;
  • дрель, набор сверл;
  • компьютерные или канальные вентиляторы в зависимости от проекта.

Фильтры меняются или чистятся каждые 1-4 месяца.

Материалы должны храниться в зависимости от типа выбранного рекуператора.

Изготовление пластинчатого рекуператора воздуха для дома своими руками

Изготовление пластинчатого рекуператора своими руками

Рекуператор воздуха — это дорогое оборудование, рассчитанное на длительный срок использования. Срок окупаемости может варьироваться от 3–8 лет, в зависимости от начальной стоимости агрегата. При возможности устройство для рекуперации воздуха можно изготовить самостоятельно. Для этого лучше всего подойдёт конструкция на основе металлических пластин.

Плюсы и минусы

К преимуществам пластинчатого рекуператора можно отнести:

  • простая и надёжная конструкция, не требующая замены рабочих элементов в ходе эксплуатации;
  • простая технология монтажа без применения специализированного инструмента;
  • КПД до 80% в зависимости от параметров воздуха;
  • минимальные затраты энергопотребления для работы приточного и вытяжного вентилятора;
  • высокий срок службы за счёт отсутствия движущихся частей и износа деталей;
  • возможность модернизации путём добавления большего количества пластин.
  • при отсутствии электроэнергии воздух транспортируется по системе вентиляции за счёт естественной тяги.

Главным недостатком пластинчатого рекуператора является образование конденсата на рабочих элементах. При низкой температуре воздуха влага замерзает, что приводит к падению пропускной способности вентиляции. Для решения проблемы применяются специальные устройства, которые прогревают конструкцию рекуператора.

Необходимые материалы

Материал для сборки пластинчатого теплообменника

Для изготовления пластинчатого рекуператора потребуется следующий материал:

  • оцинкованный металл толщиной 0,7–1,5 мм, текстолит, полипропилен или поликарбонат общей площадью 7–8 м2;
  • тонкие деревянные рейки, пробковая подложка или оргстекло толщиной 2–3 мм;
  • нержавеющий металл, пластик, фанера или древесно-стружечная плита;
  • пластиковый или металлический фланец для воздуховода в количестве 4 шт.;
  • стальной уголок 20×20 мм;
  • силиконовый герметик;
  • оцинкованные саморезы.

Для равномерной циркуляции воздуха потребуется приобрести 2 вентилятора нужной мощности. В качестве фильтров можно использовать специальные бумажные изделия для вентиляции, которые требуют замены раз в 3–4 месяца.

Технология изготовления

Проклейка изоляционной прокладки на металлическую пластинку

Перед изготовлением рекуператора потребуется подготовить электролобзик, ножовку по металлу, шуруповёрт, молоток, строительный нож, перчатки и защитные очки. Технология изготовления пластинчатого рекуператора состоит из следующего:

  1. Листовой металл нарезается с помощью ножовки по металлу на пластины размером 20×30, 30×30 или 30×40 см. Размер пластин зависит от габаритов и расчётной мощности рекуператора. Желательно, чтобы общая площадь подготовленных пластин была не менее 3–4 м2.
  2. Из тонкой деревянной рейки или пробковой подложки нарезаются прокладки шириной 1–1,5 см. Длина равна длине пластины. Далее, из фанеры или ДСП выпиливается 2 полотна такого же размера, как и пластины.

  3. На каждую металлическую пластину приклеивается три прокладки — одна по центру и две по противоположным сторонам. После приклейки все пластины собираются в стопку. Для этого каждая полоса промазывается универсальным клеем, после чего панели укладываются друг на друга.
  4. При укладке каждая последующая панель поворачивается на 90о. Полученная стопка панелей аккуратно прижимается грузом. Для этого сверху укладывается прокладка из дерева, на которую можно положить груз весом 5–7 кг.
  5. Стальной уголок подгоняется по высоте стопки с панелями. Всего потребуется 4 заготовки, которые прикручиваются по углам стопки. Для крепления используются оцинкованные саморезы.

  6. Приступают к сборке корпуса из фанеры, ДСП, пластика или металла. Высота и длина корпуса будет равна диагонали пластинчатого элемента, а ширина — высоте стопки с пластинами. После раскройки выполняется сборка корпуса с помощью шуруповёрта и саморезом.
  7. После сборки корпуса на его боковые стенки наносится разметка под монтаж фланцев. Диаметр отверстия должен быть равен сечению воздуховода. Для пропила используется электролобзик. В завершение в отверстия устанавливаются фланцы.

  8. Внутри корпуса монтируются направляющие под теплообменный короб. Направляющие можно изготовить из уголка. Для фиксации направляющей к коробу используются саморезы и силиконовый герметик. После производится сборка рекуператора. Теплообменный блок помещается в корпус.

Если в корпусе предусмотрено место, то на входе воздушных потоков закрепляются бумажные или тряпичные фильтры и вентиляторы. После сборки рекуператора можно переходить к монтажу в существующую систему вентиляции.

Пластинчатые рекуператоры

Пластинчатые рекуператоры, в отличие от роторных, не имеют движущихся частей и не нуждаются в обслуживании, поэтому идеально подходят для применения в квартирах, офисах и коттеджах. Эти рекуператоры имеют несколько разновидностей:

  1. Самые простые и недорогие – перекрестноточные теплоутилизаторы, в которых потоки приточного и вытяжного воздуха движутся перпендикулярно друг другу. Такой рекуператор имеет посредственные характеристики: тепловая эффективность на уровне 40–45% и склонность к обмерзанию даже при слабом морозе. Обмерзание происходит, когда теплый и влажный вытяжной воздух охлаждается приточным потоком с отрицательной температурой. Влага из вытяжного воздуха конденсируется на холодной поверхности рекуператора и замерзает. На иллюстрации видно, что в области со снежинками воздух из помещения контактирует с поверхностью, имеющей отрицательную температуру. По мере обмерзания вытяжного канала поступление теплого воздуха из помещения снижается, область с отрицательной температурой растет и постепенно весь вытяжной канал заполняется льдом. Из-за указанных недостатков рассматриваемое техническое решение имеет ограниченно применение, однако на базе нескольких перекрестноточных модулей можно собрать более эффективный каскадный рекуператор.

  2. Каскадный перекрестноточный рекуператор уже можно применять в регионах с холодным климатом. Так, тепловая эффективность трехкаскадного рекуператора составляет около 70%, а минимальная температура наружного воздуха, при которой он может устойчиво работать – минус 25–30°С. На иллюстрации видно, что конденсация влаги происходит, преимущественно, в модуле, который имеет положительную температуру. А в модуль с отрицательной температурой попадает уже осушенный воздух с небольшим влагосодержанием. Однако каскадные рекуператоры не лишены недостатков: более сложная конструкция приводит к образованию перетоков между каналами из-за неплотностей в местах соединений модулей. Перетоки воздуха приводят к падению тепловой эффективности рекуператора и проникновению запахов из вытяжного канала в приточный. Кстати, проверить качество сборки вентустановки с рекуператором можно с помощью фонарика: выключите свет и посветите фонариком в один из каналов – полоски света в другом канале покажут места, где будут происходить перетоки воздуха.

  3. Энтальпийный перекрестноточный рекуператор обеспечивает частичный перенос влаги из вытяжного в приточный поток воздуха. Традиционные пластинчатые рекуператоры изготавливают из алюминия, который не впитывают и не пропускают влагу. Основой же энтальпийного рекуператора является мембрана из специального материала, который пропускает молекулы водяного пара, увлажняя приточный воздух. Трехкаскадный энтальпийный рекуператор возвращает около 40–50% влаги, при этом мембрана, из которой изготовлен теплоутилизатор, не должна намокать и обмерзать, так как со временем это приводит к её разрушению. По этой причине энтальпийный рекуператор нельзя использовать совместно с канальным увлажнителем воздуха, а также для обслуживания помещений с влагоизбытками (бассейны, сауны) и других помещений с относительной влажностью воздуха выше 50%.

  4. Противоточные рекуператоры. Максимально возможная тепловая эффективность пластинчатого рекуператора определяется взаимным расположением потоков воздуха. Эффективность перекрестноточного модуля не может превышать 50%, поэтому для увеличения общей эффективности рекуперации используют каскадирование. Расплачиваться за это приходится усложнением конструкции, возникновением перетоков, увеличением габаритов и стоимости оборудования. В тоже время повысить эффективность рекуперации можно простым способом, направив потоки приточного и вытяжного воздуха навстречу друг другу – такая схема обеспечивает максимально возможную эффективность и не требует каскадирования. Противоточные рекуператоры сложнее в изготовлении и потому дороже, однако с развитием технологий появилась возможность выпускать относительно недорогие противоточные рекуператоры с заданной эффективностью. Тепловая эффективность противоточного теплоутилизатора определяется его размерами и может достигать 90%. Другим его преимуществом является стабильная работа при температуре наружного воздуха до минус 35 градусов: конденсация влаги происходит там, где поверхность рекуператора имеет положительную температуру, затем весь конденсат стекает в поддон и удаляется из рекуператора. Еще одним преимуществом такого рекуператора является практически полное отсутствие перетоков, поскольку он выполнен в виде единого модуля.

Принцип действия и особенности агрегата

Понятие процесса

За счет такой схемы организации установка будет экономить тепло в доме. За короткий промежуток времени и с небольшими затратами электрической энергии будет сформирован идеальный микроклимат в доме.

Экономическая целесообразность теплообменника рекуперативного типазависит и от остальных факторов:

  • Цены на энергоносители.
  • Цена установки устройства.
  • Затраты, которые связаны с обслуживанием устройства.
  • Продолжительность использования системы.

Обратите внимание, рекуператор воздуха для дома является важным, но далеко не единственным элементом, который требуется для эффективной вентиляции в жилом помещении. Вентиляция вместе с рекуперацией является комплексной системой, которая функционирует лишь при условии работы в профессиональной «связке»

Эффективность устройства

При понижении температуры окружающей среды эффективность агрегата уменьшается, но все же сделать рекуператор воздуха для частного дома своими руками важно, так как при существенной разнице система отопления будет перегружена. Если за окном лишь 0 градусов, то в жом будет попадать воздух с температурой в +16 градусов

Бытовые агрегаты с легкостью справляются со своей задачей. Эффективность устройства рассчитать несложно, если использовать следующую формулу:

Ƞ=(tпост –  tулицы)/(tкомн –  tулицы)

  • tпост – это температура поступившего воздуха (после рекуперации).
  • tулицы – температура на улице.
  • tкомн – температура в доме по рекуперации.

Основные разновидности конструкции

Специалисты уделяют особое внимание тому, что системы рекуперации с вентиляцией для тепла есть нескольких разновидностей:

  • Пластинчатые.
  • Роторные.
  • С отдельными теплоносителями.
  • Трубчатые.
КонструкцияКПДОсобенности
Теплообменник пластинчатого вида с перекрестным токомОт 60 до 80%Средний КПД, небольшие потери давления, конструкция компактная, удобно подключать.
Комбинированное устройство из двух пластинчатых теплообменников с перекрестным токомОт 70 до 80%Высокий КПД, но из-за этого потери давления выше, удобно подключать.
Теплообменник противоточный на пластикахОт 80 до (!) 90%Высокий КПД при умеренных потерях давления, требуется место для установки, конструкция дороже вышеописанных.
Теплообменник противоточный канального типаОт 85 до 95%Самый высокий КПД, относительно большие потери давления, потребуется дополнительно пространство для установки.
Роторный теплообменникОт 75 до 85%Из-за риска переноса запахов подойдет только для вентиляции, которая рассчитана на одну квартиру, имеет небольшое сопротивление потоку.

Итак, давайте рассмотрим их подробнее.

Пластинчатый вид отличается от остальных видов тем, что в его конструкции есть алюминиевые листы. Такая установка считается наиболее сбалансированной даже с точки зрения стоимости и значения теплопроводности (КПД от 45% до 72%). Устройство отличается также простотой выполнения, доступной ценой и отсутствием каких-либо подвижных элементов. Для установки не потребуется специальная подготовка. Вы сможете провести ее без сложностей дома, собственноручно.

Роторные устройства являются самыми популярными. В их конструкции обязательно присутствует вал вращения, который питается от электричества, а еще 2 канала для воздухообмена с противотоками. Как именно работает подобный механизм? Один из участков ротора начинает прогреваться от воздуха, а после он поворачивается и тепло переходит к холодным массам, которые сосредоточены в соседнем канале. Но, несмотря на высокий уровень КПД у такой установки есть ряд весьма ощутимых недостатков:

  • Большой вес.
  • Требуется регулярный ремонт и техническое обслуживание.
  • Сложно починить устройство своими руками, сделать его вновь работоспособным.
  • Воздушные массы смешиваются.
  • Зависимость от электроэнергии.

Что такое рекуператор и зачем нужен

Рекуператор – это техническое устройство, являющееся элементом системы вентиляции, оснащённое теплообменником, посредством которого достигается снижение потерь тепловой энергии внутри помещений, где он используется. Наличие рекуператора позволяет обеспечить требуемый воздухообмен в помещении, что достигается наличием в конструкции приточно-вытяжных вентиляторов, а теплообменник позволяет осуществлять отбор тепла из воздуха, откачиваемого из помещения и передачи его воздушным потокам, поступающим извне. Основными функциями подобного оборудования являются:

  • Обеспечение вентиляции помещения в круглогодичном цикле использования.
  • Снижение потерь тепла в зимний период.
  • Охлаждение воздуха, поступающего извне, в летний период.

Вариант размещения устройства в частном доме

Изготовление пластинчатого аппарата своими руками

Для изготовления конструкции своими руками, необходимо подготовить материалы: ­

  • оцинкованное железо, листовой алюминий, текстолит, медь, специальную бумагу или гетинакс в количестве 4 кв. м.;
  • в качестве прокладки между платинами рекуператора требуется техническая пробка, толщиной 0,2 см или рейка; ­
  • силиконовый герметик; ­
  • для изготовления корпуса потребуется коробка из металла или фанеры; ­
  • датчики, фиксирующие перепад давления;
  • уголок для стоек;
  • минеральная вата в качестве изоляционного материала;
  • метизы;
  • электролобзик.

Процесс изготовления:

  1. С помощью лобзика заготовленные листы разрезаются на квадратные заготовки со стороной 20-30 см. Нужно стараться, чтобы все квадраты получились одинаковыми. Их количество должно составлять 70 штук.
  2. К противоположным сторонам квадратов приклеивается рейка, которая по длине равна стороне. Свободным остается только последняя заготовка.
  3. Все пластины соединяются в кассету. Свободная заготовка является последней в конструкции.
  4. При помощи уголка формируется вокруг кассеты каркас.
  5. При помощи силиконового герметика обрабатываются все швы.
  6. Корпус оснащается для фиксации фланцев специальным креплением. В нижней части изготавливается отверстие. Здесь располагается трубка для отвода конденсата.
  7. Чтобы кассета легко изымалась для проведения ремонта, в корпусе из уголков изготавливаются направляющие.
  8. В качестве изоляционного материала используется минеральная вата. Ею утепляется внутренняя часть стенок. Толщина слоя составляет 40 мм.
  9. В месте прохождения теплого воздуха устанавливается датчик давления.
  10. Монтаж рекуператора ведется в вентиляционную систему.

Основные технические параметры

Зная требуемую производительность системы вентиляции и КПД теплообмена рекуператора легко рассчитать экономию на обогреве воздуха для помещения при конкретных климатических условиях. Сравнив потенциальную выгоду с затратами на покупку и обслуживание системы можно обоснованно сделать выбор в пользу рекуператора или стандартного калорифера.

Часто производители оборудования предлагают модельную линейку, в которой вентиляционные блоки с похожим функционалом отличаются объемом воздухообмена. Для жилых помещений этот параметр необходимо рассчитывать согласно таблице 9.1. СП 54.13330.2016

Коэффициент полезного действия

Под коэффициентом полезного действия рекуператора понимают эффективность теплопередачи, которую рассчитывают по следующей формуле:

K = (Тп – Тн) / (Тв – Тн)

В которой:

  • Тп – температура поступающего воздуха внутрь помещения;
  • Тн – температура наружного воздуха;
  • Тв – температура воздуха в помещении.

Максимальное значение КПД при штатной скорости потока воздуха и определенном температурном режиме указывают в технической документации устройства. Его реальный показатель будет немного меньше.

В случае самостоятельного изготовления пластинчатого или трубчатого рекуператора для достижения максимальной эффективности теплопередачи необходимо придерживаться следующих правил:

  • Наилучший теплообмен обеспечивают противоточные устройства, затем перекрестноточные, а наименьшую – с однонаправленным движением обоих потоков.
  • Интенсивность теплообмена зависит от материала и толщины стенок, разделяющих потоки, а также от длительности нахождения воздуха внутри устройства.

Зная КПД рекуператора можно рассчитать его энергоэффективность при различных температурах наружного и внутреннего воздуха:

Е (Вт) = 0,36 х Р х К х (Тв – Тн)

где Р (м3/час) – расход воздуха.

Расчет эффективности рекуператора в денежном эквиваленте и сравнение с затратами на его приобретение и монтаж для двухэтажного коттеджа общей площадью 270 м2 показывает целесообразность установки такой системы

Стоимость рекуператоров с высоким КПД достаточно велика, они имеют сложную конструкцию и значительные размеры. Иногда можно обойти эти проблемы установкой нескольких более простых устройств таким образом, чтобы поступающий воздух последовательно проходил через них.

Производительность вентиляционной системы

Объем пропускаемого воздуха определяется статическим давлением, которое зависит от мощности вентилятора и основных узлов, создающих аэродинамическое сопротивление. Как правило, точный его расчет невозможен ввиду сложности математической модели, поэтому для типовых моноблочных конструкций проводят экспериментальные исследования, а для индивидуальных устройств осуществляют подбор компонентов.

Мощность вентилятора необходимо выбирать с учетом пропускной способности устанавливаемых рекуператоров любых типов, которая в технической документации указана как рекомендуемая скорость потока или объем пропускаемого устройством воздуха за единицу времени. Как правило, допустимая скорость воздуха внутри устройства не превышает значения 2 м/с.

В противном случае на высоких скоростях в узких элементах рекуператора происходит резкий рост аэродинамического сопротивления. Это приводит к лишним затратам электроэнергии, неэффективном прогреве наружного воздуха и сокращения срока службы вентиляторов.

График зависимости потери давления от скорости потока воздуха для нескольких моделей рекуператоров высокой производительности показывает нелинейный рост сопротивления, поэтому необходимо придерживаться требований по рекомендуемому объему воздухообмена указываемых в технической документации устройства

Изменение направления потока воздуха создает дополнительное аэродинамическое сопротивление. Поэтому при моделировании геометрии воздуховода внутри помещения желательно минимизировать количество поворотов труб на величину 90 градусов. Диффузоры для рассеивания воздуха также увеличивают сопротивление, поэтому желательно не использовать элементы со сложным рисунком.

Загрязненные фильтры и решетки создают значительные помехи движению потока, поэтому их необходимо периодически прочищать или менять. Одним из эффективных способов оценки засоренности является установка датчиков, отслеживающих перепад давления на участках до фильтра и после него.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий