Сравнение основных характеристик различных утеплителей: теплопроводности и плотности, гигроскопичности и толщины

Пример расчета толщины стены по теплопроводности

При выборе типового или индивидуального проекта застройщик получает комплект документации, необходимый для возведения стен. Силовые конструкции в обязательном порядке просчитаны на прочность с учетом ветровых, снеговых, эксплуатационных, конструкционных нагрузок. Толщина стен учитывает характеристики материала каждого слоя, поэтому, теплопотери гарантированно будут ниже допустимых норм СНиП. В этом случае заказчик может предъявить претензии организации, занимавшейся проектированием, при отсутствии необходимого эффекта в процессе эксплуатации жилища.

Однако, при строительстве дачи, садового домика многие владельцы предпочитают экономить на приобретении проектной документации. В этом случае расчеты толщины стен можно произвести самостоятельно. Специалисты не рекомендуют пользоваться сервисами на сайтах компаний, реализующих конструкционные материалы, утеплители. Многие из них завышают в калькуляторах значения коэффициентов теплопроводности стандартных материалов для представления собственной продукции в выгодном свете. Подобнее ошибки в расчетах чреваты для застройщика снижением комфортности внутренних помещений в холодный период.

Самостоятельный расчет не представляет сложностей, используется ограниченное количество формул, нормативных значений:

  • теплосопротивление стены – 3,5 либо больше этого числа (согласно СНиП), является суммой теплосопротивлений всех слоев, из которых состоит несущая стена
  • коэффициент теплопроводности строительных материалов – каждый производитель конструкционного материала, светопрозрачных конструкций, утеплителя указывает его в обязательном порядке, однако, лучше дополнительно свериться с таблицей в нормативах СНиП
  • теплосопротивление отдельного слоя стены – вычисляется путем умножения толщины слоя (м) на коэффициент теплопроводности материала

Например, чтобы привести толщину кирпичной стены в соответствие с нормативным теплосопротивлением, потребуется умножить коэффициент для этого материала, взятый из таблицы на нормативное теплосопротивление:

0,76 х 3,5 = 2,66 м

Подобная крепость излишне затратна для любого застройщика, поэтому, следует снизить толщину кладки до приемлемых 38 см, добавив утеплитель:

  • облицовка в полкирпича 12,5 см
  • внутренняя стена в кирпич 25 см

Теплосопротивление кирпичной кладки в этом случае составит 0,38/0,76 = 0,5 единиц. Вычитая из нормативного параметра полученный результат, получаем необходимое теплосопротивление слоя утеплителя:

3,5 – 0,5 = 3 единицы

При выборе базальтовой ваты с коэффициентом 0,039 единиц, получаем слой толщиной:

3 х 0,039 = 11,7 см

Отдав предпочтение экструдированному пенополистиролу с коэффициентом 0,037 единиц, снижаем слой утеплителя до:

3 х 0,037 = 11,1 см

На практике, можно выбрать 12 см для гарантированного запаса либо обойтись 10 см, учитывая наружные, внутренние облицовки стен, так же обладающие теплосопротивлением. Необходимый запас можно добрать без использования конструкционных материалов либо утеплителей, изменив конструкцию кладки. Замкнутые пространства воздушных прослоек внутри некоторых типов облегченных кладок так же обладают теплосопротивлением.

Их теплопроводность можно узнать из нижеприведенной таблицы, находящейся в СНиП.

Например, 10 см прослойка замкнутого контура обеспечивает теплоспопротивление 0,18 либо 0,15 единиц при отрицательных, положительных температурах, соответственно. Сантиметровый воздушный зазор добавляет несущей стене 0,15 или 0,13 единиц теплосопротивления (зимой, летом, соответственно).

Кто на свете всех теплей?

Цель такого тщательного изучения утеплителей одна — узнать, какой из них лучше всех. Однако, это палка о двух концах, ведь материалы с высокой термоизоляцией могут иметь другие нежелательные характеристики.

Пенополиуретан или экструдированный пенополистирол

чемпион по теплоизоляции – это пенополиуретан

Но у пенополиуретана появилась настоящая альтернатива – экструдированный пенополистирол. По сути это тот же пенопласт, но прошедший дополнительную обработку – экструдировку, которая улучшила его. Это материал с равномерной структурой и замкнутыми ячейками, который представлен в виде листов разной толщины. От обычного пенопласта его отличает усиленная прочность и способность выдерживать механическое давление. Именно поэтому его можно назвать достойным конкурентом пенополиуретану. Единственный недостаток монтажа отдельных плит – швы, которые успешно заделываются монтажной пеной.

А уж чем вам удобнее пользоваться – жидким утеплителем из баллончика или плитами, выбирать только вам. Но помните, что эти материалы не «дышат» и могут образовывать эффект запотевших окон, так что все утепление может уйти из форточки во время проветривания. Поэтому утеплять такими материалами нужно разумно.

не будет образовываться конденсата

Другие утеплители

Также набирает популярности дешевое и экологичное пеностекло, которое можно применять только без нагрузок, поскольку он весьма хрупок.

Теплопроводность готового здания. Варианты утепления конструкций

При разработке проекта постройки необходимо учесть все возможные варианты и пути потери тепла. Большое его количество может уходить через:

стены – 30%; крышу – 30%; двери и окна – 20%; полы – 10%.

Теплопотери неутепленного частного дома

При неверном расчете теплопроводности на этапе проектирования, жильцам остается довольствоваться только 10% тепла, получаемого от энергоносителей. Именно поэтому дома, возведенные из стандартного сырья: кирпича, бетона, камня рекомендуют дополнительно утеплять. Идеальная постройка согласно таблице теплопроводности строительных материалов должна быть выполнена полностью из теплоизолирующих элементов. Однако малая прочность и минимальная устойчивость к нагрузкам ограничивает возможности их применения.

Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

Самым распространенным вариантом сочетание несущей конструкции из высокопрочных материалов с дополнительным слоем теплоизоляции. Сюда можно отнести:

Каркасный дом. При его постройке каркасом из древесины обеспечивается жесткость всей конструкции, а укладка утеплителя производится в пространство между стойками. При незначительном уменьшении теплообмена в некоторых случая может потребоваться утепление еще и снаружи основного каркаса. Дом из стандартных материалов. При выполнении стен из кирпича, шлакоблоков, утепление должно проводиться по наружной поверхности конструкции.

Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме

Сравнение утеплителей по теплопроводности

Пенополистирол (пенопласт)

Плиты пенополистирола (пенопласта)

Это самый популярный теплоизоляционный материал в России, благодаря своей низкой теплопроводности, невысокой стоимости и легкости монтажа. Пенопласт изготавливается в плитах толщиной от 20 до 150 мм путем вспенивания полистирола и состоит на 99% из воздуха. Материал имеет различную плотность, имеет низкую теплопроводность и устойчив к влажности.

Благодаря своей низкой стоимости пенополистирол имеет большую востребованность среди компаний и частных застройщиков для утепления различных помещений. Но материал достаточно хрупкий и быстро воспламеняется, выделяя токсичные вещества при горении. Из-за этого пенопласт использовать предпочтительнее в нежилых помещениях и при теплоизоляции не нагружаемых конструкций — утепление фасада под штукатурку, стен подвалов и т.д.

Экструдированный пенополистирол

Пеноплэкс (экструдированный пенополистирол)

Экструзия (техноплэкс, пеноплэкс и т.д.) не подвергается воздействию влаги и гниению. Это очень прочный и удобный в использовании материал, который легко режется ножом на нужные размеры. Низкое водопоглощение обеспечивает при высокой влажности минимальное изменение свойств, плиты имеют высокую плотность и сопротивляемость сжатию. Экструдированный пенополистирол пожаробезопасен, долговечен и прост в применении.

Все эти характеристики, наряду с низкой теплопроводностью в сравнении с прочими утеплителями делает плиты техноплэкса, URSA XPS или пеноплэкса идеальным материалом для утепления ленточных фундаментов домов и отмосток. По заверениям производителей лист экструзии толщиной в 50 миллиметров, заменяет по теплопроводности 60 мм пеноблока, при этом материал не пропускает влагу и можно обойтись без дополнительной гидроизоляции.

Минеральная вата

Плиты минеральной ваты Изовер в упаковке

Минвата (например, Изовер, URSA, Техноруф и т.д.) производится из натуральных природных материалов – шлака, горных пород и доломита по специальной технологии. Минеральная вата имеет низкую теплопроводность и абсолютно пожаробезопасна. Выпускается материал в плитах и рулонах различной жесткости. Для горизонтальных плоскостей используются менее плотные маты, для вертикальных конструкций используют жесткие и полужесткие плиты.

Однако, одним из существенных недостатков данного утеплителя, как и базальтовой ваты является низкая влагостойкость, что требует при монтаже минваты устройства дополнительной влаго- и пароизоляции. Специалисты не рекомендуют использовать минеральная вату для утепления влажных помещений – подвалов домов и погребов, для теплоизоляции парилки изнутри в банях и предбанников. Но и здесь ее можно использовать при должной гидроизоляции.

Базальтовая вата

Плиты базальтовой ваты Роквул в упаковке

Данный материал производится расплавлением базальтовых горных пород и раздуве расплавленной массы с добавлением различных компонентов для получения волокнистой структуры с водоотталкивающими свойствами. Материал не воспламеняется, безопасен для здоровья человека, имеет хорошие показатели по теплоизоляции и звукоизоляции помещений. Используется, как для внутренней, так и для наружной теплоизоляции.

При монтаже базальтовой ваты следует использовать средства защиты (перчатки, респиратор и очки) для защиты слизистых оболочек от микрочастиц ваты. Наиболее известная в России марка базальтовой ваты – это материалы под маркой Rockwool. При эксплуатации плиты теплоизоляции не уплотняются и не слеживаются, а значит, прекрасные свойства низкой теплопроводности базальтовой ваты со временем остаются неизменными.

Пенофол, изолон (вспененный полиэтилен)

Пенофол и изолон – это рулонные утеплители толщиной от 2 до 10 мм, состоящие из вспененного полиэтилена. Материал также выпускается со слоем фольги с одной стороны для создания отражающего эффекта. Утеплитель имеет толщину в несколько раз тоньше представленных ранее утеплителей, но при этом сохраняет и отражает до 97% тепловой энергии. Вспененный полиэтилен имеет длительный срок эксплуатации и экологически безопасен.

Изолон и фольгированный пенофол – легкий, тонкий и очень удобный в работе теплоизоляционный материал. Используют рулонный утеплитель для теплоизоляции влажных помещений, например, при утеплении балконов и лоджий в квартирах. Также применение данного утеплителя поможет вам сберечь полезную площадь в помещении, при утеплении внутри. Подробнее об этих материалах читайте в разделе «Органическая теплоизоляция».

Иные критерии подбора утеплителей

Теплоизоляционное покрытие обеспечивает снижение теплопотерь на 30-40 %, повышает прочность несущих конструкций из кирпича и металла, сокращает уровень шума и не забирает полезную площадь постройки. При выборе утеплителя помимо теплопроводности нужно учитывать другие критерии.

Объемный вес

Вес и плотность минваты влияет на качество утепления

Данная характеристика связана с теплопроводностью и зависит от типа материала:

  • Минераловатные продукты отличаются плотностью 30-200 кг/м3, поэтому подходят для всех поверхностей строения.
  • Вспененный полиэтилен имеет толщину 8-10 мм. Плотность без фольгирования равняется 25 кг/м3 с отражающей основой – около 55 кг/м3.
  • Пенопласт отличается удельным весом от 80 до 160 кг/м3, а экструдированный пенополистирол – от 28 до 35 кг/м3. Последний материал является одним из самых легких.
  • Полужидкий напыляемый пеноизол при плотности 10 кг/м3 требует предварительного оштукатуривания поверхности.
  • Пеностекло имеет плотность, связанную со структурой. Вспененный вариант характеризуется объемным весом от 200 до 400 кг/м3. Теплоизолят из ячеистого стекла – от 100 до 200 м3, что делает возможным применение на фасадных поверхностях.

Способность держать форму

Плиты и пенополиуретан имеют одинаковую степень жесткости, хорошо выдерживают форму

Производители не указывают формостабильность на упаковке, но можно ориентироваться на коэффициенты Пуассона и трения, сопротивления изгибам и сжатиям. По стабильности формы судят о сминаемости или изменении параметров теплоизоляционного слоя. В случае деформации существуют риски утечки тепла на 40 % через щели и мосты холода.

Формостабильность стройматериалов зависит от типа утеплителя:

  • Вата (минеральная, базальтовая, эко) при укладке между стропилами расправляется. За счет жестких волокон исключается деформация.
  • Пенные виды держат форму на уровне жесткой каменной ваты.

Паропроницаемость

Определяет «дышащие» свойства материала – способность к пропусканию воздуха и пара. Показатель важен для контроля микроклимата в помещении – в законсервированных комнатах образуется больше плесени и грибка. В условиях постоянной влажности конструкция может разрушаться.

По степени паропроницаемости выделяют два типа утеплителей:

  • Пены – изделия, для производства которых применяется технология вспенивания. Продукция вообще не пропускает конденсат.
  • Ваты – теплоизоляция на основе минерального или органического волокна. Материалы могут пропускать конденсат.

Горючесть

Показатель, на который ориентируются при строительстве наземных частей жилых зданий. Классификация токсичности и горючести указана в ст. 13 ФЗ № 123. В техническом регламенте выделены группы:

  • НГ – негорючие: каменная и базальтовая вата.
  • Г – возгораемые. Материалы категории Г1 (пенополиуретан) отличаются слабой возгораемостью, категории Г4 (пенополистирол, в т.ч. экструдированный) – сильногорючие.
  • В – воспламеняемые: плиты из ДСП, рубероид.
  • Д – дымообразующие (ПВХ).
  • Т – токсичные (минимальный уровень – у бумаги).

Звукоизоляция

Характеристика, связанная с паропроницаемостью и плотностью. Ваты исключают проникновение посторонних шумов в помещении, через пены проникает больше шума.

У плотных материалов лучше шумоизоляционные свойства, но укладка осложняется толщиной и весом. Оптимальным вариантом для самостоятельных теплоизоляционных работ будет каменная вата с высоким звукопоглощением. Аналогичные показатели – у легкой стекловаты или базальтового утеплителя со скрученными длинными тонкими волокнами.

Теплопроводность и коэффициент теплопроводности. Что это такое.

Теплопроводность.

Так что же такое теплопроводность? С точки зрения физики теплопроводность – это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).

Можно сказать проще, теплопроводность – это способность материала проводить тепло. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Передача тепла происходит за счет передачи энергии при столкновении молекул вещества. Происходит это до тех пор, пока температура внутри тела не станет одинаковой. Такой процесс может происходить в твердых, жидких и газообразных веществах.

На практике, например в строительстве при теплоизоляции зданий, рассматривается другой аспект теплопроводности, связанный с передачей тепловой энергии. В качестве примера возьмем “абстрактный дом”. В “абстрактном доме” стоит нагреватель, который поддерживает внутри дома постоянную температуру, скажем, 25 °С. На улице температура тоже постоянная, например, 0 °С. Вполне понятно, что если выключить обогреватель, то через некоторое время в доме тоже будет 0 °С. Все тепло (тепловая энергия) через стены уйдет на улицу.

Чтобы поддерживать температуру в доме 25 °С, нагреватель должен постоянно работать. Нагреватель постоянно создает тепло, которое постоянно уходит через стены на улицу.

Коэффициент теплопроводности.

Количество тепла, которое проходит через стены (а по научному – интенсивность теплопередачи за счет теплопроводности) зависит от разности температур (в доме и на улице), от площади стен и теплопроводности материала, из которого сделаны эти стены.

Следует отметить, что значения коэффициента теплопроводности материалов указываются для толщины материала в 1 метр. Чтобы определить теплопроводность материала для любой другой толщины, надо коэффициент теплопроводности разделить на нужную толщину, выраженную в метрах.

В строительных нормах и расчетах часто используется понятие “тепловое сопротивление материала”. Это величина обратная теплопроводности. Если, на пример, теплопроводность пенопласта толщиной 10 см – 0,37 Вт/(м2*К), то его тепловое сопротивление будет равно 1 / 0,37 Вт/(м2*К) = 2,7 (м2*К)/Вт.

Коэффициент теплопроводности материалов.

Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

Ассортимент современных утеплителей

Теплоизоляционная продукция отличается универсальностью и внушительным выбором. На вопрос, чем лучше утеплить стены, трудно дать однозначный ответ. Следует рассмотреть несколько факторов:

  • размещение утеплителя (внутри или снаружи);
  • материал, из которого возведены несущие конструкции (бетон, дерево и т. д.);
  • климатические условия региона;
  • бюджет на проведение теплоизоляционных работ.

Популярные виды утеплителей для стен являются универсальными изделиями. Они характеризуются низкой теплопроводностью, значительным шумопоглощением, прочностью и долговечностью.

Пенопласт — ячеистые плиты малого веса с низким показателем передачи тепла и поглощения влаги. Размер изоляционного слоя составляет 50-100 мм. Безопасность материала подтверждает его использование в качестве пищевой упаковки. Он долговечен, не деформируется при эксплуатации и не гниет. Плиты пенопласта поглощают звук и вибрацию. Они монтируются снаружи и внутри здания, установка не требует создания каркаса.

Экструдированный пенополистирол ЭППС — материал на основе полистирола, имеющий однородную закрытую ячеистую структуру. Благодаря ней плиты ЭПППС устойчивы к механической нагрузке, характеризуются минимальным водопоглощением и передачей тепла. На стенах, отделанных пенополистиролом, не появится плесень и грибок. Влагостойкий утеплитель можно использовать для изоляции фундамента и цокольного этажа. Добавка антипиренов при изготовлении изделий снижает их горючесть и повышает безопасность эксплуатации. Для утепления стен используются изделия плотностью 35 кг/м3.

Минеральная вата на основе базальтового или стеклянного волокна — лучший утеплитель для стен. Она обладает следующими характеристиками:

  • устойчивость к морозу и высокой температуре;
  • низкий коэффициент теплопроводности;
  • паропроничаемость, позволяющая поддерживать нормальный уровень влажности;
  • устойчивость к химическим веществам, гниению, микроорганизмам;
  • пожаробезопасность.

Это дешевый, экологически безопасный и простой в монтаже материал. Легкая минеральная вата используется для каркасных стен и перегородок, а более плотная (80-150 кг/м3) — для вентилируемых и штукатурных фасадов.

Пенополиуретан — утеплитель для стен, предлагаемый в виде плит или напыления. Последний вариант отличается высокой адгезией с любым материалом, создает монолитный слой, устойчивый к влаге и механическому воздействию. Пенополиуретан является одним из самых эффективных изоляторов, его выбирают для частных домов и производственных помещений. Недостаток теплоизоляции — высокая стоимость и чувствительность к ультрафиолету.

Отражающая теплоизоляция на основе вспененного полиэтилена стала популярна благодаря минимальному размеру толщины полотна при высоких изолирующих свойствах. Материал с армирующим слоем алюминиевой фольги популярен при утеплении балконов, лоджий, бань. Он устойчив к влаге, отражает инфракрасные волны от своей поверхности. Полотно толщиной 2-10 мм отнимает малый объем полезной площади.

Таблица теплопроводности материалов на Пли-

МатериалПлотность, кг/м3Теплопроводность, Вт/(м·град)Теплоемкость, Дж/(кг·град)
Плита бумажная прессованая6000.07
Плита пробковая80…5000.043…0.0551850
Плитка облицовочная, кафельная20001.05
Плитка термоизоляционная ПМТБ-20.04
Плиты алебастровые0.47750
Плиты из гипса ГОСТ 64281000…12000.23…0.35840
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77)200…10000.06…0.152300
Плиты из керзмзито-бетона400…6000.23
Плиты из полистирол-бетона ГОСТ Р 51263-99200…3000.082
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75)40…1000.038…0.0471680
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78)500.056840
Плиты из ячеистого бетона ГОСТ 5742-76350…4000.093…0.104
Плиты камышитовые200…3000.06…0.072300
Плиты кремнезистые0.07
Плиты льнокостричные изоляционные2500.0542300
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80150…2000.058
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-962250.054
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия)170…2300.042…0.044
Плиты минераловатные повышенной жесткости ГОСТ 22950-952000.052840
Плиты минераловатные повышенной жесткости на органофосфатном связующем (ТУ 21-РСФСР-3-72-76)2000.064840
Плиты минераловатные полужесткие на крахмальном связующем125…2000.056…0.07840
Плиты минераловатные на синтетическом и битумном связующих0.048…0.091
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66)50…3500.048…0.091840
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-8780…1000.045
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые30…350.038
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00320.029
Плиты перлито-битумные ГОСТ 16136-803000.087
Плиты перлито-волокнистые1500.05
Плиты перлито-фосфогелевые ГОСТ 21500-762500.076
Плиты перлито-1 Пластбетонные ТУ 480-1-145-741500.044
Плиты перлитоцементные0.08
Плиты строительный из пористого бетона500…8000.22…0.29
Плиты термобитумные теплоизоляционные200…3000.065…0.075
Плиты торфяные теплоизоляционные (ГОСТ 4861-74)200…3000.052…0.0642300
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе300…8000.07…0.162300

Преимущества и недостатки различной теплоизоляции

При выборе теплоизоляции нужно учитывать не только ее физические свойства, но и такие параметры, как легкость монтажа, потребность в дополнительном обслуживании, долговечность и стоимость.

Сравнение самых современных вариантов

Как показывает практика, проще всего осуществлять монтаж пенополиуретана и пеноизола, которые наносятся на обрабатываемую поверхность в форме пены. Эти материалы пластичны, они с легкостью заполняют полости внутри стен постройки. Недостатком вспениваемых веществ является потребность в использовании специального оборудования для их распыления.

Как показывает приведенная выше таблица, достойную конкуренцию пенополиуретану составляет экструдированный пенополистирол. Этот материал поставляются в виде твердых блоков, но с помощью обычного столярного ножа ему можно придать любую форму. Сравнивая характеристики пенных и твердых полимеров, стоит отметить, что пена не образует швов, и это является ее главным преимуществом по сравнению с блоками.

Сравнение ватных материалов

Минеральная вата по свойствам похожа на пенопласты и пенополистирол, однако при этом «дышит» и не горит. Также она обладает лучшей устойчивостью при воздействии влаги и практически не меняет свои качества в процессе эксплуатации. Если стоит выбор между твердыми полимерами и минеральной ватой, лучше отдать предпочтение последней.

У каменной ваты сравнительные характеристики те же, что и у минеральной, но стоимость выше. Эковата имеет приемлемую цену и легко монтируется, но отличается низкой прочностью на сжатие и со временем проседает. Стекловолокно также проседает и, кроме того, осыпается.

Сыпучие и органические материалы

Для теплоизоляции дома иногда применяются сыпучие материалы – перлит и гранулы из бумаги. Они отталкивают воду и устойчивы к воздействию патогенных факторов. Перлит экологичен, он не горит и не оседает. Тем не менее, сыпучие материалы редко применяются для утепления стен, лучше с их помощью обустраивать полы и перекрытия.

Из органических материалов необходимо выделить лен, древесное волокно и пробковое покрытие. Они безопасны для окружающей среды, но подвержены горению, если не пропитаны специальными веществами. Кроме того, древесное волокно подвержено воздействию биологических факторов.

В целом, если учитывать стоимость, практичность, теплопроводность и долговечность утеплителей, то наилучшие материалы для отделки стен и перекрытий – это пенополиуретан, пеноизол и минеральная вата. Остальные виды изоляции обладают специфическими свойствами, так как разработаны для нестандартных ситуаций, а применять такие утеплители рекомендуется только в том случае, если других вариантов нет.

В продаже доступно много строительных материалов, использующихся для повышения свойств сооружения сохранять тепло – утеплителей. В конструкции дома он может применяться практически в каждой ее части: от фундамента и до чердака. Далее пойдет речь об основных свойствах материалов, способных обеспечить необходимый уровень теплопроводности объектов различного назначения, а также будет приведено их сравнение, в чем поможет таблица.

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

  1. Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5 кирпича.
  2. Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.

    Рассчитывать придется все ограждающие конструкции

  3. Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.

Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными

Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание

Поделитесь в социальных сетях:FacebookX
Напишите комментарий