Устройства плавного включения для ламп накаливания
Монтаж устройства плавного включения(УПВЛ) для ламп накаливания или, плавного пуска(ПП), является ярким примером того, как можно правильно сэкономить на электричестве. Ситуация, когда часто перегорают одни и те же точечные светильники или лампы люстры, в офисе или квартире, знакома многим. Срок службы
При каждом таком нагреве, происходит её постепенное разрушение, ввиду того, что атомы вольфрама безвозвратно испаряются. Испарение происходит постепенно и неравномерно, что приводит к неизбежному перегоранию нити, в самом тонком месте. Соответственно, каждое включение и отключение лампы, приближает момент, её выхода из строя. Подключение плавного пуска, увеличивает время нагрева спирали до нескольких секунд, тем самым продлевая срок службы лампы, т.к. при плавном включении, испарение атомов вольфрама происходит в разы меньше. При использовании такой схемы включения, срок службы ламп может увеличится в 5-7 раз. Очевидна экономия времени и денег.
УПВЛ может использоваться в цепях 220 В переменного и 12 В, 24 В. постоянного тока. Устройство монтируется на разрыве фазного провода в схеме электропроводки помещения. В случае, если напряжение питания 12 В или 24 В, то плавный пуск подключается перед трансформатором, к его первичной обмотке. При подаче питания на ПП, изначально, напряжение на выходе равно 0, затем оно плавно повышается до номинального, за период времени Т, который зависит от мощности, типа и схемы, использованной в приборе плавного включения: на тиристоре, симисторе или микросхеме. При наличии навыков радиоэлектроники, подобные устройства может собрать любой радиолюбитель, т.к. электротехнические схемы, используемые для плавного зажигания ламп, относительно просты для монтажа. Ну а для тех, кто не обладает знаниями для самостоятельной сборки УПВЛ, в большинстве обычных и интернет магазинов, по продаже электротехнических изделий, представлены устройства ПП различных производителей с номиналами до 1500 Вт. Это Navigator, Tdm Electriv, Uniel, Гранит и др. По мимо своей основной функции, продление срока работы нити накаливания, устройства плавного включения обеспечивают и другую полезную функцию – это обеспечивание подачи стабильного напряжения, выполняя тем самым, защиту от скачков в сети. Место монтажа ПП, как правило в зависимости от габаритов — это распаечные коробки, подрозетники, за потолочное пространство и другие места, в которые есть быстрый и удобный доступ для замены или обслуживания. Подключение должно производиться со строгим соблюдением фазировки, показанной в инструкции.
Другим электротехническим прибором, позволяющим сэкономить на освещении жилища и продлить срок службы ламп накаливания является диммерный выключатель или светорегулятор. Прибор монтируется в стандартный подрозетник, вместо простого выключателя. Функции, которые выполняет диммер – это плавный розжиг лампы и возможность регулировки яркости ламп накаливания. По техническим характеристикам и устройству диммеры различают на механические и электронные. Механические диммерные выключатели характерны тем, что в них, регулирование яркости происходит путём кручения ручки потенциометра, электронные диммеры устроены сложнее – управление в них происходит с помощью микроконтроллера, а сама регулировка уровня освещённости, путём нажатия кнопок на корпусе или сенсора. Основные различия между этими двумя типами светорегулирующих устройств – варианты регулировки света и цена. Если в механическом светорегуляторе варианты управления сводятся к обычному кручению ручки яркости, то в электронном
Разновидности лампочек
В светорегуляторах используют самые разные типы источников света: лампы накаливания, галогенные (обычные и низковольтные), люминесцентные, светодиодные лампочки. Варианты подключения диммера с выключателем отличаются в зависимости от типа используемых ламп.
Лампочки накаливания и галогенные лампы
Эти источники света рассчитаны на 220 вольт. Чтобы изменить интенсивность освещения, применяются диммеры любых моделей, так как нагрузка все активная в силу отсутствия емкости и индуктивности. Недостаток систем такого типа — сдвиг цветового спектра в сторону красного цвета. Происходит это в случае уменьшения напряжения. Мощность диммеров находится в промежутке между 60 и 600 ваттами.
Низковольтные галогенные лампочки
Для работы с низковольтными лампами понадобится понижающий трансформатор с регулятором для индуктивной нагрузки. Отличительная особенность регулятора — маркировка аббревиатурой RL. Рекомендуется приобретать трансформатор не отдельно от диммера, а как встроенное устройство. Для электронного трансформатора устанавливают емкостные показатели. Для галогенных источников света важную роль играет плавность колебаний напряжения, иначе срок жизни лампочек резко сократится.
Люминесцентные лампы
Стандартный диммер придется менять на ЭПРА (электронная пускорегулирующая аппаратура), если запуск осуществляется выключателем, стартовым тлеющим зарядом или электромагнитным дросселем. Простейшая схема системы с люминесцентными лампами показана на рисунке ниже.
Напряжение на лампочку направляется с генератора частоты 20–50 кГц. Свечение образуется за счет вхождения в резонанс контура, создаваемого дросселем и емкостью. Для изменения силы тока (что меняет яркость света) нужна смена частоты. Процесс диммирования начинается сразу после достижения полной мощности.
Электронная пускорегулирующая аппаратура производится на основе контроллера IRS2530D, оснащенного восемью выводами. Данное устройство выступает в качестве полумостового 600-вольтного драйвера, обладающего функционалом для запуска, диммирования и предотвращения выхода из строя. Интегральная схема рассчитана на реализацию всех возможных способов контроля, благодаря наличию множества выходов. На рисунке внизу изображена схема управления люминесцентными источниками света.
Светодиодные лампочки
Хотя светодиоды экономичны, нередко появляется необходимость уменьшения яркости их свечения.
Особенности светодиодных источников света:
- стандартные цоколи E, G, MR;
- возможность функционирования с сетью без дополнительных устройств (для 12-вольтовых ламп).
Со стандартными диммерами светодиодные лампочки несовместимы. Они просто выходят из строя. Поэтому для работы со светодиодами применяют специальные выключатели с регуляторами яркости для светодиодных ламп.
Подходящие для светодиодов регуляторы выпускают в двух исполнениях: с контролем напряжения и с управлением посредством широтно-импульсной модуляции. Первый тип устройств очень дорог и габаритен (в него входит реостат или потенциометр). Светорегуляторы с изменением напряжения — не лучший выбор для низковольтных лампочек и способны работать только при 9 и 18 вольтах.
Для этого типа источников света характерно изменение спектра как реакция на регулировку напряжения. По этой причине регулировка световых диодов осуществляется путем контроля за продолжительностью передаваемых импульсов. Так удается избежать мерцания, поскольку частота следования импульсов доходит до 300 кГц.
Существуют такие регуляторы с ШИМ:
- Модульные. Управление осуществляется выносными регуляторами, пультами ДУ или с помощью специальных шин.
- Установленные в монтажной коробке. Применяются в виде выключателей с поворотным или кнопочным управлением.
- Выносные системы, устанавливаемые в конструкциях потолка (для лент светодиодов и точечных светильников).
Для широтно-импульсного регулирования необходимы дорогие микроконтроллеры. Причем ремонту они не подлежат. Возможно самостоятельное изготовление устройства на базе микросхемы. Внизу показана схема диммера для светодиодных лампочек.
Нормальная периодичность колебаний достигается за счет использование генератора, в составе которого имеется конденсатор и резистор. Интервалы подключения и отключения нагрузки на выходе микросхемы задаются размером переменного резистора. В качестве усилителя мощности служит полевой транзистор. Если ток выше 1 ампера, понадобится радиатор охлаждения.
Варианты схем
В магазинах предлагается широкий выбор устройств плавного пуска для ламп от российских и зарубежных производителей. Монтаж не требует особой квалификации. Нужно сделать разрыв провода фазы, ведущего к лампе накаливания, и подключить прибор при помощи клеммников.
При отсутствии клеммников провода спаиваются.
Чаще всего на производствах используется одна из трех схем:
- туристорная;
- симисторная;
- специализированная (обычно микросхема КР1182ПМ1или DIP8).
В сети 220 В
Самая простая схема плавного включения ламп туристорная.
Для самостоятельного изготовления требуются:
- лампа накаливания;
- 4 диода (для создания выпрямительного моста);
- туристор;
- конденсатор (10 мкФ);
- 2 резистора (один из них переменной емкости).
Время включение определяет переменное сопротивление.
В момент включения ток проходит через лампочку, выпрямляется мостом, проходит через резистор и начинает скапливаться в конденсаторе. После достижения определенного порога зарядки ток подается на туристор, он немного открывается. По мере наполнения конденсатора туристор открывается все больше, лампочка постепенно загорается. Максимальная мощность света достигается при полной зарядке конденсатора.
Лампочки накаливания рассчитаны на 220 В (на практике может быть до 240 В). Диоды и туристор выбираются, базируясь на этот показатель. При самостоятельном изготовлении необходимо учесть, что можно использовать любые диоды с напряжением от 300 В и туристор, способный выдерживать мощность от 2 кВт. Емкость накопителя тоже большого значения не имеет
Важно знать, что при ее уменьшении лампочка будет зажигаться быстрее
Использование симистора (попупроводникового ключа) позволяет уменьшить количество элементов в туристорной схеме.
Используется:
- дроссель;
- 2 резистора;
- конденсатор;
- диод;
- симистор.
По принципу действия эта схема мало отличается от предыдущей. Время включения определяет цепочка из резистора и конденсатора, которые подключены через диод. По мере наполнения емкости конденсатора постепенно открывается симистор, через который подпитана лампочка накаливания. Она загорается не мгновенно, а плавно. Такой прибор более удобен в использовании благодаря небольшим размерам.
Плавный пуск ламп при помощи приборов, созданных на основе микросхемы КР1182ПМ1(DIP8), можно использовать с источниками освещения, обладающими мощностью до 150 Ватт.
Основа этого прибора – 2 туристора и 2 системы управления. Время регулируется резистором и конденсатором. Силовую часть от управляющей отделяет симистор, подключенный через задающий ток резистор. Работу внутренних туристоров регулируют 2 наружных конденсатора, от помех, создаваемых сетью, защищает дополнительный конденсатор и резистор.
При использовании этой схемы свет не только плавно включается, но и плавно выключается. Длительность загорания и затухания регулируется подбором емкости конденсаторов.
Плавное включение обладает существенным недостатком – снижением яркости светового потока. Для достижения оптимального уровня освещения требуются лампы с максимальной мощностью.
Для одноклавишных выключателей существует схема на основе транзистора. Когда лампочка накаливания выключена, он закрыт. После включения напряжение через резистор и диод поступает на конденсатор, он начинает заряжаться. Максимальный уровень (9,1 В) ограничивает стабилитрон.
После достижении оптимального напряжения транзистор начинает открываться, нить накаливания лампочки, подключенной последовательно, постепенно нагревается. Обязателен второй резистор у конденсатора, обеспечивающий его разрядку после выключения. Основное преимущество использования транзистора – отсутствие мерцания лампочки накаливания.
При напряжении 12 В
Если светильник точечный, то используется трансформатор, преобразующий 220 вольт в 12 вольт. Для подключения к 12 В устройства плавного пуска он устанавливается перед преобразователем напряжения.
Если такой прибор необходим для автомобиля, требуются специальные схемы – импульсные или линейные (ШИМ-регуляторы).
Линейные подключаются к источникам света параллельно. После включения ток проходит через резистор, лампы тусклые. После подключения реле они загораются на всю мощность.
Резистор должен быть керамический, мощность примерно 5 Вт, сопротивление 0,1-0,5 Ом.
Импульсные схемы создаются на основе полевого транзистора, подающего ток короткими импульсами. За счет этого нити накаливания не нагреваются до уровня, при котором возможен разрыв. В перерывах между импульсами ток успевает равномерно распределиться по нити, выравнивая сопротивление.
Стабилизатор
Продолжаем улучшать наш простой блок питания своими руками. Для получения качественного и стабильного напряжения без малейших пульсаций, скачков, и просадки напряжения используют стабилизатор напряжения.
В качестве стабилизатора используют стабилитрон, или интегральный стабилизатор напряжения. Мы собрали схему блока питания для устройства, которое нуждается в стабилизированном источнике питания. Это устройство собрано на контроллере, и без стабильного напряжения оно работать не будет. При небольшом повышении напряжении контроллер сгорит. А при понижении напряжении устройство откажется работать. Вот для таких устройств и предназначен стабилизатор.
Вывод 1 интегрального стабилизатора — входное напряжение. Вывод 2 — общий (земля). Вывод 3 — выходит стабилизированное напряжение.
Максимум, что может выдать L7805 — ток в 1,5 А, поэтому надо рассчитывать остальные детали на ток более 1,5 А. Выход трансформатора выбираем на ток более 1,5 ампера и напряжением выше стабилизированного значения больше на два вольта. Например, для LM7812 с выхода трансформатора должно выходить 14 — 15 В, для LM7805 7 – 8 В. Но не забывайте, что эти стабилизаторы греются из-за внутреннего сопротивления. Чем больше перепад между входом и выходом, тем больше нагрев. Ведь лишнее напряжение эти стабилизаторы гасят на себе.
Интегральные стабилизаторы бывают с общим минусом LM78**, или с общим плюсом LM79**. На месте звездочек находятся цифры указывающие напряжение стабилизации. Например LM7905 — общий плюс, напряжение стабилизации -5 В. Еще один пример LM7812 — общий минус, напряжение стабилизации 12 В. А теперь посмотрим распиновку, или назначение выводов интегрального стабилизатора.
Самостоятельная замена светодиодов
Испорченные светоэлементы заметны невооруженным глазом. Они имеют подпалины, нагар, механические повреждения. Хотя случается, что проблема не выявляется при визуальном осмотре.
В этом случае потребуется тестер, которым проверяют каждый светодиод по порядку, пока не выявят нерабочий. Если он один, замкните контакты, соединив цепь напрямую. Это никак не повлияет на работоспособность других, хотя срок эксплуатации может незначительно сократиться.
Естественно лучше произвести замену светодиода таким же, но новым.
Для этого перегоревший выпаивают, а замену паяют на освободившееся посадочное место. Типоразмеры и маркировка указаны непосредственно на плате. Некоторые конструкции позволяют произвести замену без паяльника. Разогрейте пайку феном, а пинцетов удалите элемент. Пока крепеж эластичный, вставьте новый и остудите плату. Затем соберите все в обратной последовательности и протестируйте лампочку.
Как переделать лампу накаливания для дежурного освещения:
Лампа накаливания, включённая через диод горит в пол силы и намного дольше. Для дежурного или аварийного освещения в подъезде, погребе, на улице или в тех местах где нужна недорогая и долговечная лампочка при этом яркость света играет малую роль. Рекомендую воспользоваться нехитрым советом наших прадедов-умельцев. Включить лампочку через диод с соответствующими ей параметрами (на пример Д226 ), главное что б он туда помещался
Суть заключается в том, что бы взять цоколь от сгоревшей лампы накаливания (будьте аккуратны!, не порежьтесь, изымая его), обыкновенный полупроводниковый диод (обращайте внимание на мощностные характеристики) и простую лампу накаливания и всё это совместить между собой как показано на рисунках
Таким вот нехитрым образом вы получаете долговечную лампу накаливания, которая горит в полсилы и за счёт этого прослужит достаточно долго, чем обеспечит вам дежурное освещение.
Успеха вам с освещением, и помните множество полезных идей советов и хитростей вас ждёт на https://bip-mip.com/
- Абажур своими рукамиКак сделать торшер своими руками многие из вас могут и.
- Простое устройство защиты от короткого замыкания схемаНачинающие радиолюбители часто делают ошибки при проектировании новых устройств, это.
- Регулятор мощности для паяльникаПожалуй, каждый радиолюбитель задумывался о простом регуляторе мощности для своего.
- Тиристорный регулятор яркости настольной лампыНе смотря на то, что лампы накаливания вымирающий вид:).
- Фотолитография в домашних условияхНе один современный радиолюбитель не обходится без той или.
Идея N1 – Галогенка в помощь
Наиболее простой вариант – не изобретать велосипед с нуля, а использовать для базы старую или сгоревшую лампу освещения. Среди большого разнообразия осветительного оборудования довольно широко распространены галогенные лампочки. В быту особенно популярны их модели со штырьковым цоколем G и GU поэтому изготовление светодиодного светильника мы рассмотрим на примере такой лампы.
Для работы вам потребуются такие элементы:
- Светодиоды – обеспечивают световой поток, от их технических характеристик будет зависеть мощность самодельной лампочки. Для этих целей желательно иметь одинаковые светодиодные элементы, так как это позволит упростить расчет и принцип их соединения.
- Резисторы – на случай, если вам понадобится ограничить ток в цепи светодиодных деталей, однако можно обойтись и без них, если сопротивления светодиодов будет достаточно при выбранной схеме соединения.
- Клей, герметик или другой материал для закрепления светодиодных элементов.
- Соединительные провода, основание для фиксации светодиодов в LED лампочке.
- Слесарный инструмент (отвертки, молоток, пассатижи), паяльник для электрического соединения светодиодных и резистивных деталей.
При выборе количества светодиодов в лампе изначально составьте схему расположения на пластине, затем выберите способ их подключения – последовательное или последовательно-параллельное. Параллельную схему для самодельной LED лампы можно выбирать лишь в том случае, если каждая деталь рассчитана на 12 В или вы ограничите величину напряжения для каждого из них с помощью резистора.
Схему расположения на будущей лампе можно придумать самому, а можете использовать стандартную форму:
Рис. 1: схема расположения светодиодов
Процесс изготовления светодиодной лампочки будет состоять из следующих этапов:
С помощью отвертки удалите герметик от штырьков цоколя старой лампы и выбейте их молотком или пассатижами.
Рис. 2
Удалите герметик от выводов Важно не переусердствовать, чтобы не сломать корпус
Подготовьте основание для светодиодов, подойдет текстолит, гетинакс, электрокартон, также сгодиться бумага наклеенная на алюминиевый лист. Вырежьте круг подходящего диаметра по внутренним размерам галогенного прибора освещения.
Рис. 3: подготовьте основание для светодиодов
- В соответствии с выбранной схемой расположения сделайте отверстия в основании, для этого можно использовать высечку, дырокол или нож.
- Установите светодиоды в отверстия на основании и зафиксируйте их при помощи клея.
Рис. 4. Зафиксируйте светодиоды на основании
Спаяйте светодиодные элементы в лампе по такой схеме, чтобы ток, протекающий через каждый из них или отдельную группу, не превышал допустимую величину. Компоновать в группы вы можете по своему усмотрению, для ограничения силы тока можете установить в цепь резистор. При пайке обязательно соблюдайте полярность выводов.
Рис. 5. Спаяйте по выбранной схеме
- К полученным выводам от полупроводниковых элементов «+» и «-» припаяйте два куска медного провода. Соединять их скрутками не допускается в соответствии с п.2.1.21 ПУЭ.
- По окончанию пайки ножки и места соединения желательно покрыть или залить клеем, он будет выступать в качестве диэлектрика новой лампы.
- Установите диск со светодиодными элементами в корпус лампочки.
Рис. 6. Установите диск в корпус Проклейте его по периметру, чтобы закрепить на отражателе. Теперь у вас в руках готовый собранный прибор, не забудьте нанести на выводах маркировку.
Однако заметьте, что подключить лампу напрямую в сеть 220 Вольт нельзя, так как устройство будет рассчитано на 12 В.
The Shelby Electric Company
Адольф Шайе
Родившийся в 1867 году Шайе проживал в Париже и имел возможность наблюдать, как растет популярность электрических лампочек. В 11 лет он решил зарабатывать собственные деньги и стал сопровождать своего отца, шведского иммигранта и владельца небольшой компании, производящей лампы накаливания. Шайе увлекся физикой и закончил обучение сразу в двух академиях наук – немецкой и французской. После обучения Шайе занимался проектированием нитей накаливания в крупной немецкой энергетической компании, а в 1896 году переехал в США, где некоторое время работал в General Electric, но затем ему удалось получить 100000$ инвестиций (что в 2014 году эквивалентно сумме $2750000) и открыть фабрику по производству ламп Shelby Electric Company.
Чтобы показать превосходящее качество своей продукции Шайе решил провести публичное испытание. Лампочки разных производителей были размещены рядом и все были подключены к одному источнику питания, напряжение в котором постепенно повышалось. Western Electrician в 1897 году рассказывает, что произошло дальше:
«Лампы различных марок стали сгорать и взрываться, пока лаборатория не осталась освещаться только лампами Шелби, ни одна из которых не пострадала даже при достаточно высоком напряжения во время столь наглядного испытания».
Патент Шайе
Компания Шелби заявляла, что ее лампочки работают на 30% больше и горят на 20% ярче, чем любые другие лампы в мире. Это способствовало взрывному успеху компании. В 1897 г. журнал Western Electrician сообщил, что . К концу года производительность компании выросла в два раза – с 2000 до 4000 ламп в день, а «преимущества использования ламп Шелби были настолько очевидными, что без сомнения не остались незамеченными даже среди наиболее скептически настроенных потребителей».
Выпуск продукции продолжался все следующее десятилетие. За это время появились новые технологии с вольфрамовыми нитями накала и новые производители. Компания Шелби не смогла вовремя модернизировать свое производство и оказалась не в состоянии конкурировать с новыми производителями. В 1914 году они были выкуплены General Electric, а выпуск лампочек Шелби был прекращен.
Выбор защитного блока
При подборе подходящего устройства плавного пуска рекомендуется учитывать два фактора — мощность и производителя. О мощности блока сказано выше. Что касается брендов, наибольшей известностью обладают такие компании:
- «Feron» (КНР);
- «Camelion» (КНР);
- «Шепро» (Россия);
- «Гранит 1000», «Гранит 500» (Беларусь);
- «Композит» (Россия);
- «Вжик» (совместное производство России и Китая).
Самые популярные модели выпускаются компаниями «Feron» и «Гранит». Продукция китайского производителя отличается невысокими ценами. Как и большая часть изделий из Китая, блоки от компании «Feron» считаются не слишком качественными. Для них характерны следующие недостатки:
- просадки напряжения, что нарушает работу светильника;
- мигание лампы при подключении и в процессе функционирования;
- регулярные помехи;
- среднее качество пайки;
- экономия на материалах, из которых изготовлен блок.
Продукция белорусской компании считается значительно более качественной. Однако «Гранит» не отличается компактностью, что в некоторых случаях является критически важным недостатком (например, при размещении в подрозетнике выключателя). Также следует отметить стоимость «Гранита» — более высокую, чем у китайских производителей.
Конструкция и детали.
В первом варианте исполнения схемы запуска, она была собрана на круглой плате, диаметром 50 мм. Плата эта устанавливалась в круглую нишу самого выключателя под ним. Подсоединялась схема на место выключателя, а сам выключатель (его контакты) подсоединялись по схеме на место SA1. То есть сам выключатель исполнял свою же и роль — включал и выключал люстру. Двухамперный диодный мост от компьютерного БП (KBP206), и тиристор Т10-20-У2 установленные на плате без каких либо радиаторов, вот уже несколько лет исправно пашут на люстру, общей мощностью 300 Вт. Вначале у меня стояли вместо моста просто четыре одноамперных диода, работали на пределе, два из которых потом пробились, ну и видно от них немного поджарилась плата.
Схема не имеет каких либо особо дефицитных деталей. Тиристоры здесь можно ставить любые, соответствующие только необходимой мощности (току) и напряжению, например ВТ-152, Т106-10-4 и др. Стабилитрон можно применить любой на 10-14 Вольт. Транзисторы так же можно ставить абсолютно любые, лишь бы соответствовали необходимой структуре. Я ставил КТ315 и КТ361, благо ещё имеется их запас.
Мощность схемы, ну и соответственно мощность коммутируемых галогенных ламп, зависит только от примененных в схеме диодного моста и тиристора. Например, если применить диодный мост на 10 Ампер и тиристор ВТ-152 поставить на небольшой радиатор, то такой схемой запуска можно будет запускать нагрузку до 2-х кВатт, то есть четыре галогенных прожектора по 500 ватт, в несколько раз увеличив ресурс работы их галогенных ламп. Падение напряжения на самой схеме запуска при выходе её на рабочий режим не превышает единиц Вольт, что абсолютно никак не отражается на яркости ламп, и мощность рассеиваемая на силовых элементах схемы, диодном мосту и тиристоре, будет минимальной. В следующем варианте схема запуска собрана на плате, размером 40 на 40 мм. Эту плату так же свободно можно устанавливать в нишу обычного выключателя в квартире.
До мощности запускаемых ламп 300-500 Вт, ни тиристор, ни мост нет необходимости ставить на радиатор, так как мощность на них рассеивается только в момент запуска ламп и в момент их выключения. Для запуска нескольких галогенных прожекторов, или галогенного прожектора с лампой мощностью 1000 Вт и более, тиристор и диодный мост нужно выбирать соответствующей мощности, и может быть потребуется установить на небольшой радиатор. Схема запуска в этом случае подключается, как и было сказано выше, параллельно контактам пакетника, а в качестве выключателя прожекторов можно использовать любой малогабаритный выключатель, устанавливаемый в любое удобное место. Рисунок печатной платы в формате Sprint-Layout прилагается.Печатная плата.Используемая литература; Д. Приймак. Сенсорный выключатель освещения // В помощь радиолюбителю выпуск 88, с.63.
Устройство плавного включения ламп накаливания
Резкая подача тока в лампу накаливания, технические характеристики которой рассмотрены ранее, становится причиной быстрого износа – разрыва вольфрамовой нити после очередного ее включения. Банальные перепады температуры – холодная спираль + резкая подача тока – провоцируют разрыв из-за низкого сопротивления холодного вольфрама. Нормализовать температурный режим, медленно и плавно подавая ток, может блок питания.
За долю секунд совершается прогрев спирали за счет частичной подачи тока в лампу, которой достаточно, чтобы разогреть металл для усиления его сопротивления. Медленный, уменьшенный поток напряжения поступает в лампу в течение 3 секунд. Его значение плавно возрастает в этот промежуток времени с минимального значения (от нуля), к примеру, до 176 вольт. Ограничения на подачу мощности устанавливают разные.
Срок службы, которые оборудованы блоком защиты значительно дольше. Они гарантированно прослужат вам максимально установленный производителем срок. Используют также электронный трансформатор для галогенных ламп — с тем же принципом увеличения термина службы.
Важно знать! Существует единственный недостаток блока защиты – поток света от лампы с таким устройством значительно слабеет. В частном случае, где напряжение достигло максимума в 176 В, освещение сократится на 70%. Это большая разница между состояниями «до» и «после»
Потому рекомендуют устанавливать максимально мощные лампы, чтобы не пострадать от качества света
Это большая разница между состояниями «до» и «после». Потому рекомендуют устанавливать максимально мощные лампы, чтобы не пострадать от качества света.
Способы взаимодействия магнитных полей, которые вращают ротор двигателя, различаются в зависимости от типа питающего напряжения. Это и есть главный фактор, влияющий на принцип работы электродвигателя.
При необходимости плавного пуска такого агрегата требуется преобразователь частоты, с рекомендациями по подключению которого можно ознакомиться тут.
Блоки плавного включения имеют разные ограничения на мощность. Потому при покупке лучше удостовериться, что данная модель способна выдержать высокие скачки напряжения. То есть прибор должен иметь предельный запас на 30% больше, чем подает ваша сеть.
Также важно знать общий показатель мощности всех ламп в доме. Диапазон мощности блоков, которые продаются сегодня, от 150 до 1000 ватт. Чем больше данный допустимый показатель, тем больше размеры аппарата
Учитывайте и это, так как вам нужно найти место для установки блока. Стоимость приборов защиты колеблется в пределах 200-400 рублей
Чем больше данный допустимый показатель, тем больше размеры аппарата. Учитывайте и это, так как вам нужно найти место для установки блока. Стоимость приборов защиты колеблется в пределах 200-400 рублей.
Как сделать?
Из вышеперечисленных причин, приводящих к преждевременному перегоранию лампочек накаливания, следует, что существенно срок службы лампы можно продлить, сведя до минимума перепады напряжения. Но как сделать вечную лампочку?
Самый простой способ — это включить в электрическую цепь последовательно с лампой полупроводниковый (лучше кремниевый маломощный) диод соответствующей структуры со статическим коэффициентом передачи тока не менее 50. Понятие «маломощный» в данном контексте условно, так как мощность диода подбирается соответственно мощности лампочки, к которой этот диод подключается. Данный диод можно вмонтировать в любом доступном и удобном месте цепи: прямо в корпусе выключателя, в патроне лампы и т. д. После монтажа такой схемы лампа будет получать не переменный, а однонаправленный импульсный ток через этот диод. При этом лампочка будет светить тусклее и с мерцанием. Такую схему включения ламп нельзя использовать в квартирах и рабочих помещениях, но для применения в подсобных холодных помещениях она вполне пригодна. Использование такой схемы включения электрической лампочки делает ее условно вечной. Сто лет светить, она, конечно же, не будет, но несколько лет проработает.
Следует учитывать, что данный способ продления службы лампочки до категории вечной существенно снижает и без того невысокий коэффициент полезного действия лампы накаливания.